The jointed shaft in the drivelines of the rolling mill, with its angle continuously varying in the production, has obvious impact on the stability of the main drive system. Considering the effect caused by the joint ...The jointed shaft in the drivelines of the rolling mill, with its angle continuously varying in the production, has obvious impact on the stability of the main drive system. Considering the effect caused by the joint angle and friction force of roller gap, the nonlinear vibration model of the main drive system which contains parametric excitation stiffness and nonlinear friction damping was established. The amplitude-frequency characteristic equation and bifurcation response equation were obtained by using the method of multiple scales. Depending on the bifurcation response equation, the transition set and the topology structure of bifurcation curve of the system were obtained by using the singularity theory. The transition set can separate the system into seven areas, which has different bifurcation forms respectively. By taking the 1 780 rolling mill of Chengde Steel Co for example, the simulation and analysis were performed. The amplitude-frequency curves under different joint angles, damping coefficients, and nonlinear stiffness were given. The variations of these parameters have strong influences on the stability of electromechanical resonances and the characteristic of the response curves. The best angle of the jointed shaft is 4.761 3° in this rolling mill.展开更多
A robust torsional vibration suppression strategy is proposed for the main drive system of the rolling mill subject to uncertainties,disturbances and input saturation.With given model information incorporated into obs...A robust torsional vibration suppression strategy is proposed for the main drive system of the rolling mill subject to uncertainties,disturbances and input saturation.With given model information incorporated into observer design,an extended state observer that relies only on roller speed measurements is developed to estimate the system states and lumped uncertainties of the rolling mill main drive system.To handle the motor torque saturation,an auxiliary signal system with the same order as the plant is constructed.The error between the control input and plant input is taken as the input of the constructed auxiliary system,and a number of signals are generated to compensate for the effect of the motor torque saturation.Furthermore,a robust output feedback controller is introduced to obtain better transient and steady-state performance of the rolling mill main drive system and the stability of the closed-loop system is strictly proved via Lyapunov theory.Finally,comparative simulations are performed to verify the effectiveness and superiority of the proposed control strategy.展开更多
The roller’s torsional self excited vibration caused by roller stick slip, and its influence on strip surface quality have been studied. Based on analysis of roller working surface stick slip, roller rotation dynamic...The roller’s torsional self excited vibration caused by roller stick slip, and its influence on strip surface quality have been studied. Based on analysis of roller working surface stick slip, roller rotation dynamics equations have been established. The nonlinear sliding frictional resistance has been linearized, and dynamics equations have been solved according to the characteristics of stick and slip between roller and strip. The results show that: 1) with decreasing stick time t 1, torsional vibration wave pattern gradually transforms from serration into sinusoid, and frictional self excited vibration can cover all frequency components which are lower than that of free vibration; 2) stick time t 1 is directly proportional to torque increment Δ M R , and is inversely proportional to live shaft stiffness K and drive shaft rotational velocity ω ; 3) when slip time t 2 is basically steady, the longer the stick time, the larger the energy that system absorbs and discharges. As the slip time is a constant, it easily arouses strip surface shear impact and surface streaks.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51005196)Natural Science Foundation of Hebei Province of China(F2010001317,E2012203194)
文摘The jointed shaft in the drivelines of the rolling mill, with its angle continuously varying in the production, has obvious impact on the stability of the main drive system. Considering the effect caused by the joint angle and friction force of roller gap, the nonlinear vibration model of the main drive system which contains parametric excitation stiffness and nonlinear friction damping was established. The amplitude-frequency characteristic equation and bifurcation response equation were obtained by using the method of multiple scales. Depending on the bifurcation response equation, the transition set and the topology structure of bifurcation curve of the system were obtained by using the singularity theory. The transition set can separate the system into seven areas, which has different bifurcation forms respectively. By taking the 1 780 rolling mill of Chengde Steel Co for example, the simulation and analysis were performed. The amplitude-frequency curves under different joint angles, damping coefficients, and nonlinear stiffness were given. The variations of these parameters have strong influences on the stability of electromechanical resonances and the characteristic of the response curves. The best angle of the jointed shaft is 4.761 3° in this rolling mill.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20187 and 61933009)the Top talents of Hebei provincial Education Department(Grant No.BJ2019047).
文摘A robust torsional vibration suppression strategy is proposed for the main drive system of the rolling mill subject to uncertainties,disturbances and input saturation.With given model information incorporated into observer design,an extended state observer that relies only on roller speed measurements is developed to estimate the system states and lumped uncertainties of the rolling mill main drive system.To handle the motor torque saturation,an auxiliary signal system with the same order as the plant is constructed.The error between the control input and plant input is taken as the input of the constructed auxiliary system,and a number of signals are generated to compensate for the effect of the motor torque saturation.Furthermore,a robust output feedback controller is introduced to obtain better transient and steady-state performance of the rolling mill main drive system and the stability of the closed-loop system is strictly proved via Lyapunov theory.Finally,comparative simulations are performed to verify the effectiveness and superiority of the proposed control strategy.
文摘The roller’s torsional self excited vibration caused by roller stick slip, and its influence on strip surface quality have been studied. Based on analysis of roller working surface stick slip, roller rotation dynamics equations have been established. The nonlinear sliding frictional resistance has been linearized, and dynamics equations have been solved according to the characteristics of stick and slip between roller and strip. The results show that: 1) with decreasing stick time t 1, torsional vibration wave pattern gradually transforms from serration into sinusoid, and frictional self excited vibration can cover all frequency components which are lower than that of free vibration; 2) stick time t 1 is directly proportional to torque increment Δ M R , and is inversely proportional to live shaft stiffness K and drive shaft rotational velocity ω ; 3) when slip time t 2 is basically steady, the longer the stick time, the larger the energy that system absorbs and discharges. As the slip time is a constant, it easily arouses strip surface shear impact and surface streaks.