The paper deals with a new VQ+DPCM+DCT algorithm based on Self-Organizing Feature Maps(SOFM) algorithm for image coding. In addition. a Frequency sensitive SOFM (FSOFM) has been also devel-oped. Simulation results sh...The paper deals with a new VQ+DPCM+DCT algorithm based on Self-Organizing Feature Maps(SOFM) algorithm for image coding. In addition. a Frequency sensitive SOFM (FSOFM) has been also devel-oped. Simulation results show that a very good visual quality of the coded image at 0.252 bits/pixel is obtained.展开更多
The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing ...The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.展开更多
We propose a physics-informed neural network(PINN)as the forward model for tomographic reconstructions of biological samples.We demonstrate that by training this network with the Helmholtz equation as a physical loss,...We propose a physics-informed neural network(PINN)as the forward model for tomographic reconstructions of biological samples.We demonstrate that by training this network with the Helmholtz equation as a physical loss,we can predict the scattered field accurately.It will be shown that a pretrained network can be fine-tuned for different samples and used for solving the scattering problem much faster than other numerical solutions.We evaluate our methodology with numerical and experimental results.Our PINNs can be generalized for any forward and inverse scattering problem.展开更多
Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shap...Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shapes and sizes.The popular deep learning‐based segmentation algorithms generally rely on the convolutional neural network(CNN)and Transformer.The former cannot extract the global image features effectively while the latter lacks the inductive bias and involves the complicated computation for 3D volume data.The existing hybrid CNN‐Transformer network can only provide the limited performance improvement or even poorer segmentation performance than the pure CNN.To address these issues,a short‐term and long‐term memory self‐attention network is proposed.Firstly,a distinctive self‐attention block uses the Transformer to explore the correlation among the region features at different levels extracted by the CNN.Then,the memory structure filters and combines the above information to exclude the similar regions and detect the multiple tumours.Finally,the multi‐layer reconstruction blocks will predict the tumour boundaries.Experimental results demonstrate that our method outperforms other methods in terms of subjective visual and quantitative evaluation.Compared with the most competitive method,the proposed method provides Dice(82.4%vs.76.6%)and Hausdorff distance 95%(HD95)(10.66 vs.11.54 mm)on the KiTS19 as well as Dice(80.2%vs.78.4%)and HD95(9.632 vs.12.17 mm)on the LiTS.展开更多
Neural network analysis based on Growing Hierarchical Self-Organizing Map (GHSOM) is used to examine Spatial-Temporal characteristics in Aerosol Optical Depth (AOD), Ångström Exponent (ÅE)...Neural network analysis based on Growing Hierarchical Self-Organizing Map (GHSOM) is used to examine Spatial-Temporal characteristics in Aerosol Optical Depth (AOD), Ångström Exponent (ÅE) and Precipitation Rate (PR) over selected East African sites from 2000 to 2014. The selected sites of study are Nairobi (1°S, 36°E), Mbita (0°S, 34°E), Mau Forest (0.0° - 0.6°S;35.1°E - 35.7°E), Malindi (2°S, 40°E), Mount Kilimanjaro (3°S, 37°E) and Kampala (0°N, 32.1°E). GHSOM analysis reveals a marked spatial variability in AOD and ÅE that is associated to changing PR, urban heat islands, diffusion, direct emission, hygroscopic growth and their scavenging from the atmosphere specific to each site. Furthermore, spatial variability in AOD, ÅE and PR is distinct since each variable corresponds to a unique level of classification. On the other hand, GHSOM algorithm efficiently discriminated by means of clustering between AOD, ÅE and PR during Long and Short rain spells and dry spell over each variable emphasizing their temporal evolution. The utilization of GHSOM therefore confirms the fact that regional aerosol characteristics are highly variable be it spatially or temporally and as well modulated by PR received over each variable.展开更多
The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aer...The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.展开更多
Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effe...Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy.展开更多
Quantitative phase imaging(QPI)is a label-free computational imaging technique used in various fields,including biology and medical research.Modern QPI systems typically rely on digital processing using iterative algo...Quantitative phase imaging(QPI)is a label-free computational imaging technique used in various fields,including biology and medical research.Modern QPI systems typically rely on digital processing using iterative algorithms for phase retrieval and image reconstruction.Here,we report a diffractive optical network trained to convert the phase information of input objects positioned behind random diffusers into intensity variations at the output plane,all-optically performing phase recovery and quantitative imaging of phase objects completely hidden by unknown,random phase diffusers.This QPI diffractive network is composed of successive diffractive layers,axially spanning in total~70λ,where is the illumination wavelength;unlike existing digital image reconstruction and phase retrieval methods,it forms an all-optical processor that does not require external power beyond the illumination beam to complete its QPI reconstruction at the speed of light propagation.This all-optical diffractive processor can provide a low-power,high frame rate and compact alternative for quantitative imaging of phase objects through random,unknown diffusers and can operate at different parts of the electromagnetic spectrum for various applications in biomedical imaging and sensing.The presented QPI diffractive designs can be integrated onto the active area of standard CCD/CMOS-based image sensors to convert an existing optical microscope into a diffractive QPI microscope,performing phase recovery and image reconstruction on a chip through light diffraction within passive structured layers.展开更多
文摘The paper deals with a new VQ+DPCM+DCT algorithm based on Self-Organizing Feature Maps(SOFM) algorithm for image coding. In addition. a Frequency sensitive SOFM (FSOFM) has been also devel-oped. Simulation results show that a very good visual quality of the coded image at 0.252 bits/pixel is obtained.
文摘The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.
基金the Swiss National Science Foundation(SNSF)under funding number 514481.
文摘We propose a physics-informed neural network(PINN)as the forward model for tomographic reconstructions of biological samples.We demonstrate that by training this network with the Helmholtz equation as a physical loss,we can predict the scattered field accurately.It will be shown that a pretrained network can be fine-tuned for different samples and used for solving the scattering problem much faster than other numerical solutions.We evaluate our methodology with numerical and experimental results.Our PINNs can be generalized for any forward and inverse scattering problem.
基金supported by the National Key Research and Development Program of China under Grant No.2018YFE0206900the National Natural Science Foundation of China under Grant No.61871440 and CAAI‐Huawei Mind-Spore Open Fund.
文摘Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shapes and sizes.The popular deep learning‐based segmentation algorithms generally rely on the convolutional neural network(CNN)and Transformer.The former cannot extract the global image features effectively while the latter lacks the inductive bias and involves the complicated computation for 3D volume data.The existing hybrid CNN‐Transformer network can only provide the limited performance improvement or even poorer segmentation performance than the pure CNN.To address these issues,a short‐term and long‐term memory self‐attention network is proposed.Firstly,a distinctive self‐attention block uses the Transformer to explore the correlation among the region features at different levels extracted by the CNN.Then,the memory structure filters and combines the above information to exclude the similar regions and detect the multiple tumours.Finally,the multi‐layer reconstruction blocks will predict the tumour boundaries.Experimental results demonstrate that our method outperforms other methods in terms of subjective visual and quantitative evaluation.Compared with the most competitive method,the proposed method provides Dice(82.4%vs.76.6%)and Hausdorff distance 95%(HD95)(10.66 vs.11.54 mm)on the KiTS19 as well as Dice(80.2%vs.78.4%)and HD95(9.632 vs.12.17 mm)on the LiTS.
基金This work was supported by the National Council for Science and Technology Grant funded by the Government of Kenya(NCST/ST&I/RCD/4TH call PhD/201).
文摘Neural network analysis based on Growing Hierarchical Self-Organizing Map (GHSOM) is used to examine Spatial-Temporal characteristics in Aerosol Optical Depth (AOD), Ångström Exponent (ÅE) and Precipitation Rate (PR) over selected East African sites from 2000 to 2014. The selected sites of study are Nairobi (1°S, 36°E), Mbita (0°S, 34°E), Mau Forest (0.0° - 0.6°S;35.1°E - 35.7°E), Malindi (2°S, 40°E), Mount Kilimanjaro (3°S, 37°E) and Kampala (0°N, 32.1°E). GHSOM analysis reveals a marked spatial variability in AOD and ÅE that is associated to changing PR, urban heat islands, diffusion, direct emission, hygroscopic growth and their scavenging from the atmosphere specific to each site. Furthermore, spatial variability in AOD, ÅE and PR is distinct since each variable corresponds to a unique level of classification. On the other hand, GHSOM algorithm efficiently discriminated by means of clustering between AOD, ÅE and PR during Long and Short rain spells and dry spell over each variable emphasizing their temporal evolution. The utilization of GHSOM therefore confirms the fact that regional aerosol characteristics are highly variable be it spatially or temporally and as well modulated by PR received over each variable.
基金supported by Joint Fund of Natural Science Foundation of Zhejiang-Qingshanhu Science and Technology City(Grant No.LQY18C160002)National Natural Science Foundation of China(Grant No.U1809208)+1 种基金Zhejiang Science and Technology Key R&D Program Funded Project(Grant No.2018C02013)Natural Science Foundation of Zhejiang Province(Grant No.LQ20F020005).
文摘The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.
基金supported by science and technology projects of Gansu State Grid Corporation of China(52272220002U).
文摘Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy.
文摘Quantitative phase imaging(QPI)is a label-free computational imaging technique used in various fields,including biology and medical research.Modern QPI systems typically rely on digital processing using iterative algorithms for phase retrieval and image reconstruction.Here,we report a diffractive optical network trained to convert the phase information of input objects positioned behind random diffusers into intensity variations at the output plane,all-optically performing phase recovery and quantitative imaging of phase objects completely hidden by unknown,random phase diffusers.This QPI diffractive network is composed of successive diffractive layers,axially spanning in total~70λ,where is the illumination wavelength;unlike existing digital image reconstruction and phase retrieval methods,it forms an all-optical processor that does not require external power beyond the illumination beam to complete its QPI reconstruction at the speed of light propagation.This all-optical diffractive processor can provide a low-power,high frame rate and compact alternative for quantitative imaging of phase objects through random,unknown diffusers and can operate at different parts of the electromagnetic spectrum for various applications in biomedical imaging and sensing.The presented QPI diffractive designs can be integrated onto the active area of standard CCD/CMOS-based image sensors to convert an existing optical microscope into a diffractive QPI microscope,performing phase recovery and image reconstruction on a chip through light diffraction within passive structured layers.