Utilizing the dissipative structure theory, the evolutionary process of vibrating liquefaction in saturated granules was analyzed. When the irreversible force increases to some degree, the system will be in a state fa...Utilizing the dissipative structure theory, the evolutionary process of vibrating liquefaction in saturated granules was analyzed. When the irreversible force increases to some degree, the system will be in a state far from equilibrium, and the new structure probably occurs. According to synergetics, the equation of liquefaction evolution was deduced, and the evolutionary process was analyzed by dynamics. The evolutionary process of vibrating liquefaction is a process in which the period doubling accesses to chaos, and the fluctuation is the original driving force of system evolution. The liquefaction process was also analyzed by fractal geometry. The steady process of vibrating liquefaction obeys the scaling form, and shows self-organized criticality in the course of vibration. With the increment of the recurrence number, the stress of saturated granules will decrease rapidly or lose completely, and the strain will increase rapidly, so that the granules can not sustain load and the "avalanche" phenomenon takes place.展开更多
The author puts forward the proposition of Complexity and Self Organized Criticality of Solid Earth System in the light of: (1) the science of complexity studies the mechanisms of emergence of complexity and is...The author puts forward the proposition of Complexity and Self Organized Criticality of Solid Earth System in the light of: (1) the science of complexity studies the mechanisms of emergence of complexity and is the science of the 21st century, (2) the study of complexity of the earth system would be one of the growing points occupying a strategic position in the development of geosciences in the 21st century. By the proposition we try to cogitate from a new viewpoint the ancient yet ever new solid earth system. The author abstracts the fundamental problem of the solid earth system from the essence of the generalized geological systems and processes which reads: the complexity and self organized criticality of the global nature, structure and dynamical behavior of the whole solid earth system emerging from the multiple coupling and superposition of non linear interactions among the multicomponents of the earths material and the multiple generalized geological (geological, geophysical, and geochemical) processes . Starting from this cognizance the author proposes eight major themes and the methodology of researches on the complexity and self organized criticality of the solid earth system.展开更多
This paper presents a new line importance degree evaluation index for the propagation of cascading failures, which is used to quantify transmission lines for cascade spread. And propose an improved capital matching mo...This paper presents a new line importance degree evaluation index for the propagation of cascading failures, which is used to quantify transmission lines for cascade spread. And propose an improved capital matching model, according to the results of the evaluation, to enhanced robustness of the power system. The simulation results proved that in the case of the same system, the new model can inhibit cascade spread, reduce the probability of large-scale blackouts.展开更多
A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from ...A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from their displacements. We proved that for a particular value of homogeneity, the system self organizes in a state where the agents carry out Lévy walks and the displacement signal corresponds to 1/f noise. Using probabilistic arguments, we conjectured that 1/f noise is a fingerprint of a statistical phase transition, from randomness (disorder) to predictability (order), and that it emerges from the contextuality nature of the system which generates it.展开更多
So far much effort has been made to understand the development of electrical treeing. For the simulation based study of electrical treeing, the most common method is to apply DBM stochastic model to simulate the growi...So far much effort has been made to understand the development of electrical treeing. For the simulation based study of electrical treeing, the most common method is to apply DBM stochastic model to simulate the growing of electrical treeing patterns. Previous simulation results showed that this stochastic model is capable of simulating the real electrical treeing patterns in a point-to-plane electrode system. However, this model only allows the tree channels to propagate on equipotential lines proportional to local electrical field. Therefore, it is necessary to develop a novel stochastic model to simulate the electrical patterns in order to get a good agreement with experimental results.展开更多
Self-organized criticality(SOC) of forest fires in China from 1950 to 1989 is studied. The stability, scale-invariant character of SOC and external effects on SOC of forest fires in China are analyzed in detail. Fores...Self-organized criticality(SOC) of forest fires in China from 1950 to 1989 is studied. The stability, scale-invariant character of SOC and external effects on SOC of forest fires in China are analyzed in detail. Forest-fire cellular automata model is a typical model for the research of SOC. Based on the traditional forest-fire model, an improved model, in which effects of tree species, meteorological conditions and human efforts on forest fires are considered, is introduced. Actual forest fire data in China are compared with simulation results of the two models. It is shown that forest fire data in China have SOC behavior and simulation results of the improved model accord better with actual forest fire data than those of the traditional model.展开更多
This paper makes a comprehensive survey on power system blackout modeling and analysis based on SOC (self-organized criticality). Firstly,a generalized SOC theory from the viewpoint of cybernetics is introduced. Then ...This paper makes a comprehensive survey on power system blackout modeling and analysis based on SOC (self-organized criticality). Firstly,a generalized SOC theory from the viewpoint of cybernetics is introduced. Then the evolution model of power system and its relative mathematical description,which serves as a concrete example of the proposed generalized SOC,are given. Secondly,five blackout models capturing various critical properties of power systems in different time-scales are listed. Finally,this paper analyzes SOC in power systems,such as,the revelation of criticalities of proposed models in both micro-scale and macro-scale which can be used to assess the security of power system,and cas-cading failures process.展开更多
The spatial (economic loss) and temporal characteristics of urban fires were analyzed employing relevant statistical methods. A fractal structure in terms of the power-law relation between fire frequency and economic ...The spatial (economic loss) and temporal characteristics of urban fires were analyzed employing relevant statistical methods. A fractal structure in terms of the power-law relation between fire frequency and economic loss was found on a spatial scale, and an exponential relation between frequency and time interval was found on a temporal scale. Thus, urban fire does not meet the rigorous criteria of self-organized criticality. In addition, based on the spatial power-law distribution characteristics, a correlation model of the frequency and scale of loss due to urban fire was established using the extremum statistical method. This model was then applied to the case analysis of Hefei and the probability of major fire incidents in the future was predicted.展开更多
This paper analyzes the statistics of faults in a transmission and distribution networks in central China, unveils long-term autocorrelation and power law distribution of power system faults, which indicates that powe...This paper analyzes the statistics of faults in a transmission and distribution networks in central China, unveils long-term autocorrelation and power law distribution of power system faults, which indicates that power system fault has self-organized criticality (SOC) feature. The conclusion is consistent with the power systems data in 2008 with ice storm present. Since power systems cover large areas, climate is the key factor to its safety and stability. In-depth analysis shows that the SOC of atmosphere system contributes much to that of power system faults. Extreme climate will be more intense and frequent with global warming, it will have more and more impact upon power systems. The SOC feature of power system faults is utilized to develop approaches to facilitate power systems adaptation to climate variation in an economical and efficient way.展开更多
Research on particulate characteristics has been an important frontier in physics and chemistry during the past decades. It has however been mostly focused on granular materials with short-range interactions. In this ...Research on particulate characteristics has been an important frontier in physics and chemistry during the past decades. It has however been mostly focused on granular materials with short-range interactions. In this work, it was found that the power law of particle size distribution applied to the long-range interacting system of floating dust in air, from which we deduced that self-organized criticality might hold for floating dust just as granular materials with short-range interactions. This feature may reveal underlying kinetic mechanisms, important in dispersed particle systems. In industry, power law of size distribution of dispersed particles can be used to investigate the change of dust size, and the power law parameter could be taken as an important index for dust separation.展开更多
Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the sta...Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the statistics of some parameters,the shear avalanches can display a self-organized critical state,suggesting a large ductility of BMGs.The emergence of the self-organized criticality(SOC)behavior in different BMGs is due to the temperature,strain rate,and chemical compositions.The SOC behavior is accompanied with the following phenomena:the interactions occur in the shear bands;the incubation time is longer than the relaxation time;the time interval is lacking of typical time scale;and the spatial or temporal parameters should display apower-law distribution.展开更多
Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose cl...Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose clastic soil on slope to make clastic soil in slope develop naturally towards critical stress status, and slope debris flow finally occurs under trigging by rainstorm. Also according to observation and analysis of self-organization criticality of sediment run-off system of viscous debris flow surges in ravines and power relation between magnitude and frequency of debris flows, this paper expounds similarity of the self-organized structure of debris flow mass. The self-organized critical system is a weak chaotic system. Debris flow occurrences can be pre-dicted accordingly by means of observation at certain time scale and analysis of self-organization criticality of magni-tude, frequency and time interval of debris flows.展开更多
The influences of finite-size effects on the self-organized criticality (SOC) of the traditional forest-fire model are investigated by means of a new method. The forest size is originally set to a value much greater t...The influences of finite-size effects on the self-organized criticality (SOC) of the traditional forest-fire model are investigated by means of a new method. The forest size is originally set to a value much greater than the correla-tion length of the forest. Finite-size effects are then studied by equally dividing the forest into more and more separate subsystems on condition that the forest size, igniting prob-ability and planting probability are invariant. A new phe-nomenon, i.e. the finite-size effects with one-side frequency peak, is observed. The boundary between two neighboring subsystems can be regarded as a firebreak. The concept of ’separation ability’ is introduced to represent the probability for the firebreak to block off the fire successfully. Restrain-ing effects of separation ability on finite-size effects are ana-lyzed. Finite-size effects and separation ability, as well as their relations are found to have practical importance to the actual forest-fire protection.展开更多
文摘Utilizing the dissipative structure theory, the evolutionary process of vibrating liquefaction in saturated granules was analyzed. When the irreversible force increases to some degree, the system will be in a state far from equilibrium, and the new structure probably occurs. According to synergetics, the equation of liquefaction evolution was deduced, and the evolutionary process was analyzed by dynamics. The evolutionary process of vibrating liquefaction is a process in which the period doubling accesses to chaos, and the fluctuation is the original driving force of system evolution. The liquefaction process was also analyzed by fractal geometry. The steady process of vibrating liquefaction obeys the scaling form, and shows self-organized criticality in the course of vibration. With the increment of the recurrence number, the stress of saturated granules will decrease rapidly or lose completely, and the strain will increase rapidly, so that the granules can not sustain load and the "avalanche" phenomenon takes place.
文摘The author puts forward the proposition of Complexity and Self Organized Criticality of Solid Earth System in the light of: (1) the science of complexity studies the mechanisms of emergence of complexity and is the science of the 21st century, (2) the study of complexity of the earth system would be one of the growing points occupying a strategic position in the development of geosciences in the 21st century. By the proposition we try to cogitate from a new viewpoint the ancient yet ever new solid earth system. The author abstracts the fundamental problem of the solid earth system from the essence of the generalized geological systems and processes which reads: the complexity and self organized criticality of the global nature, structure and dynamical behavior of the whole solid earth system emerging from the multiple coupling and superposition of non linear interactions among the multicomponents of the earths material and the multiple generalized geological (geological, geophysical, and geochemical) processes . Starting from this cognizance the author proposes eight major themes and the methodology of researches on the complexity and self organized criticality of the solid earth system.
文摘This paper presents a new line importance degree evaluation index for the propagation of cascading failures, which is used to quantify transmission lines for cascade spread. And propose an improved capital matching model, according to the results of the evaluation, to enhanced robustness of the power system. The simulation results proved that in the case of the same system, the new model can inhibit cascade spread, reduce the probability of large-scale blackouts.
文摘A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from their displacements. We proved that for a particular value of homogeneity, the system self organizes in a state where the agents carry out Lévy walks and the displacement signal corresponds to 1/f noise. Using probabilistic arguments, we conjectured that 1/f noise is a fingerprint of a statistical phase transition, from randomness (disorder) to predictability (order), and that it emerges from the contextuality nature of the system which generates it.
文摘So far much effort has been made to understand the development of electrical treeing. For the simulation based study of electrical treeing, the most common method is to apply DBM stochastic model to simulate the growing of electrical treeing patterns. Previous simulation results showed that this stochastic model is capable of simulating the real electrical treeing patterns in a point-to-plane electrode system. However, this model only allows the tree channels to propagate on equipotential lines proportional to local electrical field. Therefore, it is necessary to develop a novel stochastic model to simulate the electrical patterns in order to get a good agreement with experimental results.
基金This work was supported by theSpecial Fund for the Major National Basic Research Projects in China the National Basic Research Climbing Project and the National Natural Science Foundation of China (Grant Nos. 59936140 and 19932020).
文摘Self-organized criticality(SOC) of forest fires in China from 1950 to 1989 is studied. The stability, scale-invariant character of SOC and external effects on SOC of forest fires in China are analyzed in detail. Forest-fire cellular automata model is a typical model for the research of SOC. Based on the traditional forest-fire model, an improved model, in which effects of tree species, meteorological conditions and human efforts on forest fires are considered, is introduced. Actual forest fire data in China are compared with simulation results of the two models. It is shown that forest fire data in China have SOC behavior and simulation results of the improved model accord better with actual forest fire data than those of the traditional model.
基金National Science Foundation of China (Grant Nos. 50525721, 50595411)Special Fund of the National Basic Research Program of China (Grant No. G2004CB217900)
文摘This paper makes a comprehensive survey on power system blackout modeling and analysis based on SOC (self-organized criticality). Firstly,a generalized SOC theory from the viewpoint of cybernetics is introduced. Then the evolution model of power system and its relative mathematical description,which serves as a concrete example of the proposed generalized SOC,are given. Secondly,five blackout models capturing various critical properties of power systems in different time-scales are listed. Finally,this paper analyzes SOC in power systems,such as,the revelation of criticalities of proposed models in both micro-scale and macro-scale which can be used to assess the security of power system,and cas-cading failures process.
基金supported by the National Natural Science Foundation of China (91024025)
文摘The spatial (economic loss) and temporal characteristics of urban fires were analyzed employing relevant statistical methods. A fractal structure in terms of the power-law relation between fire frequency and economic loss was found on a spatial scale, and an exponential relation between frequency and time interval was found on a temporal scale. Thus, urban fire does not meet the rigorous criteria of self-organized criticality. In addition, based on the spatial power-law distribution characteristics, a correlation model of the frequency and scale of loss due to urban fire was established using the extremum statistical method. This model was then applied to the case analysis of Hefei and the probability of major fire incidents in the future was predicted.
基金Supported by the National Basic Research Program of China (Grant No. 2009CB219701)National Natural Science Foundation of China (Grant No. 50595414)Youth Scientific & Technological Innovation Project of CSEE
文摘This paper analyzes the statistics of faults in a transmission and distribution networks in central China, unveils long-term autocorrelation and power law distribution of power system faults, which indicates that power system fault has self-organized criticality (SOC) feature. The conclusion is consistent with the power systems data in 2008 with ice storm present. Since power systems cover large areas, climate is the key factor to its safety and stability. In-depth analysis shows that the SOC of atmosphere system contributes much to that of power system faults. Extreme climate will be more intense and frequent with global warming, it will have more and more impact upon power systems. The SOC feature of power system faults is utilized to develop approaches to facilitate power systems adaptation to climate variation in an economical and efficient way.
基金The present project is currently sponsored by the National Natural Science Foundation of China through Contract#50406018the Scientific Research Foundation for Returned Overseas Chinese Scholars.
文摘Research on particulate characteristics has been an important frontier in physics and chemistry during the past decades. It has however been mostly focused on granular materials with short-range interactions. In this work, it was found that the power law of particle size distribution applied to the long-range interacting system of floating dust in air, from which we deduced that self-organized criticality might hold for floating dust just as granular materials with short-range interactions. This feature may reveal underlying kinetic mechanisms, important in dispersed particle systems. In industry, power law of size distribution of dispersed particles can be used to investigate the change of dust size, and the power law parameter could be taken as an important index for dust separation.
基金Item Sponsored by National Natural Science Foundation of China(51371122)Program for the Innovative Talents of Higher Learning Institutions of Shanxi of China(2013)The Youth Natural Science Foundation of Shanxi Province of China(2015021005)
文摘Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the statistics of some parameters,the shear avalanches can display a self-organized critical state,suggesting a large ductility of BMGs.The emergence of the self-organized criticality(SOC)behavior in different BMGs is due to the temperature,strain rate,and chemical compositions.The SOC behavior is accompanied with the following phenomena:the interactions occur in the shear bands;the incubation time is longer than the relaxation time;the time interval is lacking of typical time scale;and the spatial or temporal parameters should display apower-law distribution.
基金supported by the Basic Research Funds for Mountain Hazards-Special Support Domain of the Chinese Academy of Sciences(Grant No.99303)Assistance Project of the National Natural Science Foundation of China(Grant No.40071010).
文摘Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose clastic soil on slope to make clastic soil in slope develop naturally towards critical stress status, and slope debris flow finally occurs under trigging by rainstorm. Also according to observation and analysis of self-organization criticality of sediment run-off system of viscous debris flow surges in ravines and power relation between magnitude and frequency of debris flows, this paper expounds similarity of the self-organized structure of debris flow mass. The self-organized critical system is a weak chaotic system. Debris flow occurrences can be pre-dicted accordingly by means of observation at certain time scale and analysis of self-organization criticality of magni-tude, frequency and time interval of debris flows.
基金This work was supported by the National Basic Research "973" Project in China the National Natural Science Foundation in China (Grant Nos. 59876039, 59936140 and 39970621).
文摘The influences of finite-size effects on the self-organized criticality (SOC) of the traditional forest-fire model are investigated by means of a new method. The forest size is originally set to a value much greater than the correla-tion length of the forest. Finite-size effects are then studied by equally dividing the forest into more and more separate subsystems on condition that the forest size, igniting prob-ability and planting probability are invariant. A new phe-nomenon, i.e. the finite-size effects with one-side frequency peak, is observed. The boundary between two neighboring subsystems can be regarded as a firebreak. The concept of ’separation ability’ is introduced to represent the probability for the firebreak to block off the fire successfully. Restrain-ing effects of separation ability on finite-size effects are ana-lyzed. Finite-size effects and separation ability, as well as their relations are found to have practical importance to the actual forest-fire protection.