With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles ...With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles embedded in N‐doped carbon nanotubes(CNTs)(Ni@NCNTs)homogeneously coated on the surface of carbon fiber with a multistructural component of molybdenum carbide(MoC/Ni@NCNTs/CC)was synthesized.There are two forms of MoC in MoC/Ni@NCNTs/CC,including the MoC nanoclusters in a size of 2 to 4 nm anchored on Ni@N‐doped CNTs and the MoC nanoparticles as an interface between MoC/Ni@NCNTs and carbon cloth(CC).Multifunctional MoC/Ni@NCNTs/CC served as both positive and negative electrode and a heater in flexible supercapacitors and in wearable devices,which exhibited excellent electrochemical and heating performance.Besides,an all‐solid‐state supercapacitor consists of two pieces of MoC/Ni@NCNTs/CC that exhibited extraordinary energy storage performance with high‐energy density(78.7μWh/cm2 at the power density of 2.4 mW/cm2)and excellent cycling stability(≈91%capacity retention after 8000 cycles).Furthermore,all‐solid‐state flexible supercapacitors were incorporated with an MoC/Ni@NCNTs/CC electrode into self‐heating flexible devices for keeping the human body warm.Thus,MoC/Ni@NCNTs/CC is a promising electrode material for flexible and wearable storage systems and heating electronic application.展开更多
DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and mea...DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and measurement.Both simulation and measurement prove that DSOI MOSFETs have the advantage of much lower thermal resistance of substrate and suffer less severe self heating effect than their SOI counterparts. At the same time,the electrical advantages of SOI devices can stay.The thermal resistance of DSOI devices is very close to that of bulk devices and DSOI devices can keep this advantage into deep sub micron realm.展开更多
A novel empirical model for large-signal modeling of an RF-MOSFET is proposed. The proposed model is validated in the DC, AC, small-signal and large-signal characteristics of a 32-finger nMOSFET fabricated in SMIC's ...A novel empirical model for large-signal modeling of an RF-MOSFET is proposed. The proposed model is validated in the DC, AC, small-signal and large-signal characteristics of a 32-finger nMOSFET fabricated in SMIC's 0.18 μm RF CMOS technology. The power dissipation caused by self-heating is described. Excellent agreement is achieved between simulation and measurement for DC, S-parameters (50 MHz-40 GHz), and power characteristics, which shows that our model is accurate and reliable.展开更多
Deep submicron partially depleted silicon on insulator(PDSOI) MOSFETs with H-gate were fabricated based on the 0.35μm SOI process developed by the Institute of Microelectronics of the Chinese Academy of Sciences. B...Deep submicron partially depleted silicon on insulator(PDSOI) MOSFETs with H-gate were fabricated based on the 0.35μm SOI process developed by the Institute of Microelectronics of the Chinese Academy of Sciences. Because the self-heating effect(SHE) has a great influence on SOI,extractions of thermal resistance were done for accurate circuit simulation by using the body-source diode as a thermometer.The results show that the thermal resistance in an SOI NMOSFET is lower than that in an SOI PMOSFET;and the thermal resistance in an SOI NMOSFET with a long channel is lower than that with a short channel.This offers a great help to SHE modeling and parameter extraction.展开更多
基金This study was supported by the Taishan Scholars Project Special Funds(Grant No.tsqn201812083)Natural Science Foundation of Shandong Province(Grant Nos.ZR2019YQ20 and 2019JMRH0410)+2 种基金Tip‐top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(Grant No.2016TQ03N541)Guangdong Natural Science Funds for Distinguished Young Scholar(Grant No.2017B030306001)the National Natural Science Foundation of China(Grant Nos.51972147 and 51732007).
文摘With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles embedded in N‐doped carbon nanotubes(CNTs)(Ni@NCNTs)homogeneously coated on the surface of carbon fiber with a multistructural component of molybdenum carbide(MoC/Ni@NCNTs/CC)was synthesized.There are two forms of MoC in MoC/Ni@NCNTs/CC,including the MoC nanoclusters in a size of 2 to 4 nm anchored on Ni@N‐doped CNTs and the MoC nanoparticles as an interface between MoC/Ni@NCNTs and carbon cloth(CC).Multifunctional MoC/Ni@NCNTs/CC served as both positive and negative electrode and a heater in flexible supercapacitors and in wearable devices,which exhibited excellent electrochemical and heating performance.Besides,an all‐solid‐state supercapacitor consists of two pieces of MoC/Ni@NCNTs/CC that exhibited extraordinary energy storage performance with high‐energy density(78.7μWh/cm2 at the power density of 2.4 mW/cm2)and excellent cycling stability(≈91%capacity retention after 8000 cycles).Furthermore,all‐solid‐state flexible supercapacitors were incorporated with an MoC/Ni@NCNTs/CC electrode into self‐heating flexible devices for keeping the human body warm.Thus,MoC/Ni@NCNTs/CC is a promising electrode material for flexible and wearable storage systems and heating electronic application.
文摘DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and measurement.Both simulation and measurement prove that DSOI MOSFETs have the advantage of much lower thermal resistance of substrate and suffer less severe self heating effect than their SOI counterparts. At the same time,the electrical advantages of SOI devices can stay.The thermal resistance of DSOI devices is very close to that of bulk devices and DSOI devices can keep this advantage into deep sub micron realm.
基金supported by the National Natural Science Foundation of China(No.60706002)the Scientific and Technologic Cooperation Foundation of Yangtze River Delta Area of China(Nos.08515810103,2008C16017).
文摘A novel empirical model for large-signal modeling of an RF-MOSFET is proposed. The proposed model is validated in the DC, AC, small-signal and large-signal characteristics of a 32-finger nMOSFET fabricated in SMIC's 0.18 μm RF CMOS technology. The power dissipation caused by self-heating is described. Excellent agreement is achieved between simulation and measurement for DC, S-parameters (50 MHz-40 GHz), and power characteristics, which shows that our model is accurate and reliable.
基金supported by the State Key Development Program for Basic Research of China(No.2006CB3027-01)
文摘Deep submicron partially depleted silicon on insulator(PDSOI) MOSFETs with H-gate were fabricated based on the 0.35μm SOI process developed by the Institute of Microelectronics of the Chinese Academy of Sciences. Because the self-heating effect(SHE) has a great influence on SOI,extractions of thermal resistance were done for accurate circuit simulation by using the body-source diode as a thermometer.The results show that the thermal resistance in an SOI NMOSFET is lower than that in an SOI PMOSFET;and the thermal resistance in an SOI NMOSFET with a long channel is lower than that with a short channel.This offers a great help to SHE modeling and parameter extraction.