Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease(AD).Most studies predominantly employ Convolutional Neural Networks(CNNs),which focus solely on l...Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease(AD).Most studies predominantly employ Convolutional Neural Networks(CNNs),which focus solely on local features,thus encountering difficulties in handling global features.In contrast to natural images,Structural Magnetic Resonance Imaging(sMRI)images exhibit a higher number of channel dimensions.However,during the Position Embedding stage ofMulti Head Self Attention(MHSA),the coded information related to the channel dimension is disregarded.To tackle these issues,we propose theRepBoTNet-CESA network,an advanced AD-aided diagnostic model that is capable of learning local and global features simultaneously.It combines the advantages of CNN networks in capturing local information and Transformer networks in integrating global information,reducing computational costs while achieving excellent classification performance.Moreover,it uses the Cubic Embedding Self Attention(CESA)proposed in this paper to incorporate the channel code information,enhancing the classification performance within the Transformer structure.Finally,the RepBoTNet-CESA performs well in various AD-aided diagnosis tasks,with an accuracy of 96.58%,precision of 97.26%,and recall of 96.23%in the AD/NC task;an accuracy of 92.75%,precision of 92.84%,and recall of 93.18%in the EMCI/NC task;and an accuracy of 80.97%,precision of 83.86%,and recall of 80.91%in the AD/EMCI/LMCI/NC task.This demonstrates that RepBoTNet-CESA delivers outstanding outcomes in various AD-aided diagnostic tasks.Furthermore,our study has shown that MHSA exhibits superior performance compared to conventional attention mechanisms in enhancing ResNet performance.Besides,the Deeper RepBoTNet-CESA network fails to make further progress in AD-aided diagnostic tasks.展开更多
Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shap...Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shapes and sizes.The popular deep learning‐based segmentation algorithms generally rely on the convolutional neural network(CNN)and Transformer.The former cannot extract the global image features effectively while the latter lacks the inductive bias and involves the complicated computation for 3D volume data.The existing hybrid CNN‐Transformer network can only provide the limited performance improvement or even poorer segmentation performance than the pure CNN.To address these issues,a short‐term and long‐term memory self‐attention network is proposed.Firstly,a distinctive self‐attention block uses the Transformer to explore the correlation among the region features at different levels extracted by the CNN.Then,the memory structure filters and combines the above information to exclude the similar regions and detect the multiple tumours.Finally,the multi‐layer reconstruction blocks will predict the tumour boundaries.Experimental results demonstrate that our method outperforms other methods in terms of subjective visual and quantitative evaluation.Compared with the most competitive method,the proposed method provides Dice(82.4%vs.76.6%)and Hausdorff distance 95%(HD95)(10.66 vs.11.54 mm)on the KiTS19 as well as Dice(80.2%vs.78.4%)and HD95(9.632 vs.12.17 mm)on the LiTS.展开更多
Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of t...Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines.展开更多
Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damag...Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damage in the dynamic service process,resulting in the formation of microcracks and performance degradation.Herein,we prepare a new hybrid hydrogel thermoelectric material PAAc/XG/Bi_(2)Se_(0.3)Te_(2.7)by an in situ polymerization method,which shows a high stretchable and self-healable performance,as well as a good thermoelectric performance.For the sample with Bi_(2)Se_(0.3)Te_(2.7)content of 1.5 wt%(i.e.,PAAc/XG/Bi2Se0.3Te27(1.5 wt%)),which has a room temperature Seebeck coefficient of-0.45 mV K^(-1),and exhibits an open-circuit voltage of-17.91 mV and output power of 38.1 nW at a temperature difference of 40 K.After being completely cut off,the hybrid thermoelectric hydrogel automatically recovers its electrical characteristics within a response time of 2.0 s,and the healed hydrogel remains more than 99%of its initial power output.Such stretchable and self-healable hybrid hydrogel thermoelectric materials show promising potential for application in dynamic service conditions,such as wearable electronics.展开更多
BACKGROUND Endoscopic management is the first-line therapy for post-liver-transplant anas-tomotic strictures.Although the optimal duration of treatment with plastic stents has been reported to be 8-12 months,data on s...BACKGROUND Endoscopic management is the first-line therapy for post-liver-transplant anas-tomotic strictures.Although the optimal duration of treatment with plastic stents has been reported to be 8-12 months,data on safety and duration for metal stents in this setting is scarce.Due to limited access to endoscopic retrograde cholan-giopancreatography(ERCP)during the coronavirus disease 2019 pandemic in our centre,there was a change in practice towards increased usage and length-of-stay of the Kaffes biliary intraductal self-expanding stent in patients with suitable anatomy.This was mainly due to the theoretical benefit of Kaffes stents allowing for longer indwelling periods compared to the traditional plastic stents.METHODS Adult liver transplant recipients aged 18 years and above who underwent ERCP were retrospectively identified during a 10-year period through a database query.Unplanned admissions post-Kaffes stent insertion were identified manually through electronic and scanned medical records.The main outcome was the incidence of complications when stents were left indwelling for 3 months vs 6 months.Stent efficacy was calculated via rates of stricture recurrence between patients that had stenting courses for≤120 d or>120 d.RESULTS During the study period,a total of 66 ERCPs with Kaffes insertion were performed in 54 patients throughout their stenting course.In 33 ERCPs,the stent was removed or exchanged on a 3-month interval.No pancreatitis,perfor-ations or deaths occurred.Minor post-ERCP complications were similar between the 3-month(abdominal pain and intraductal migration)and 6-month(abdominal pain,septic shower and embedded stent)groups-6.1%vs 9.1%respectively,P=0.40.All strictures resolved at the end of the stenting course,but the stenting course was variable from 3 to 22 months.The recurrence rate for stenting courses lasting for up to 120 d was 71.4%and 21.4%for stenting courses of 121 d or over(P=0.03).There were 28 patients that were treated with a single ERCP with Kaffes,21 with removal after 120 d and 7 within 120 d.There was a significant improvement in stricture recurrence when the Kaffes was removed after 120 d when a single ERCP was used for the entire stenting course(71.0%vs 10.0%,P=0.01).CONCLUSION Utilising a single Kaffes intraductal fully-covered metal stent for at least 4 months is safe and efficacious for the management of post-transplant anastomotic strictures.展开更多
The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials...The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials, A<sub>μ</sub>. We assumed that the fundamental form of the Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-S<sub>μ</sub>)Ψ=0 should describe the stable particles (the electron, the proton and the dark-matter-particle (dmp)) bound to themselves under the action of their own potentials S<sub>μ</sub>. The new equation reveals that self energy is consequence of self action, it also reveals that the spin angular momentum is consequence of the dynamic structure of the stable particles. The quantitative results are the determination of their relative masses as well as the determination of the electromagnetic coupling constant.展开更多
A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is es...A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is established based on the typical cutting condition combinations, and each of networks is corresponding to a typical cutting condition. For a specifie cutting condition, the fuzzy logic method is used to select an optimum trained SOM network. The proposed monitoring system, ealled the Fuzzy-SOM-TWC, is used to classify tool states based on the in-time measurement of force, aeoustic emission(AE), and motor eurrent signals. An approximate 98%--100% correct classification of tool-wear status is obtained by testing the system with a series data samples under freely selected cutting conditions.展开更多
A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is b...A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.展开更多
The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematic...The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematical model for the coaxial twelve-rotor UAV is designed. Considering model uncertainties and external disturbances,a robust backstepping sliding mode control( BSMC) with self recurrent wavelet neural network( SRWNN) method is proposed as the attitude controller for the coaxial twelve-rotor. A combinative algorithm of backstepping control and sliding mode control has simplified design procedures with much stronger robustness benefiting from advantages of both controllers. SRWNN as the uncertainty observer is able to estimate the lumped uncertainties effectively.Then the uniformly ultimate stability of the twelve-rotor system is proved by Lyapunov stability theorem. Finally,the validity of the proposed robust control method adopted in the twelve-rotor UAV under model uncertainties and external disturbances are demonstrated via numerical simulations and twelve-rotor prototype experiments.展开更多
Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are ...Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are not set as primary design objectives.This makes data collection ability of vehicular nodes in real application environment inferior.By considering the features of nodes in wireless IoV,such as large scales of deployment,volatility and low time delay,an efficient data collection algorithm is proposed for mobile vehicle network environment.An adaptive sensing model is designed to establish vehicular data collection protocol.The protocol adopts group management in model communication.The vehicular sensing node in group can adjust network sensing chain according to sensing distance threshold with surrounding nodes.It will dynamically choose a combination of network sensing chains on basis of remaining energy and location characteristics of surrounding nodes.In addition,secure data collection between sensing nodes is undertaken as well.The simulation and experiments show that the vehicular node can realize secure and real-time data collection.Moreover,the proposed algorithm is superior in vehicular network life cycle,power consumption and reliability of data collection by comparing to other algorithms.展开更多
In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the...In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the transfer function of electro-hydraulic servo system,a kind of Pol-Ind friction model is proposed.The parameters of Pol-Ind friction model are identified and the accurate mathematical model of friction torque is obtained by experiment.The self-correcting wavelet neural network(WNN)controller is proposed,and Adam optimization algorithm is used to perform gradient optimization on scale factor and displacement factor in wavelet basis function,so as to improve the speed and precision of parameter optimization.Through comparative simulation analysis,it is clearly that the self-correcting WNN controller can effectively improve the frequency response and tracking accuracy of continuous rotary motor electro-hydraulic servo system.展开更多
The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure...The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.展开更多
The real-valued self set in immunity-based network intrusion detection system (INIDS) has some defects: multi-area and overlapping, which are ignored before. The detectors generated by this kind of self set may hav...The real-valued self set in immunity-based network intrusion detection system (INIDS) has some defects: multi-area and overlapping, which are ignored before. The detectors generated by this kind of self set may have the problem of boundary holes between self and nonself regions, and the generation efficiency is low, so that, the self set needs to be optimized before generation stage. This paper proposes a self set optimization algorithm which uses the modified clustering algorithm and Gaussian distribution theory. The clustering deals with multi-area and the Gaussian distribution deals with the overlapping. The algorithm was tested by Iris data and real network data, and the results show that the optimized self set can solve the problem of boundary holes, increase the efficiency of detector generation effectively, and improve the system's detection rate.展开更多
The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the ba...The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis.展开更多
This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorith...This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.展开更多
基金the Key Project of Zhejiang Provincial Natural Science Foundation under Grants LD21F020001,Z20F020022the National Natural Science Foundation of China under Grants 62072340,62076185the Major Project of Wenzhou Natural Science Foundation under Grants 2021HZSY0071,ZS2022001.
文摘Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease(AD).Most studies predominantly employ Convolutional Neural Networks(CNNs),which focus solely on local features,thus encountering difficulties in handling global features.In contrast to natural images,Structural Magnetic Resonance Imaging(sMRI)images exhibit a higher number of channel dimensions.However,during the Position Embedding stage ofMulti Head Self Attention(MHSA),the coded information related to the channel dimension is disregarded.To tackle these issues,we propose theRepBoTNet-CESA network,an advanced AD-aided diagnostic model that is capable of learning local and global features simultaneously.It combines the advantages of CNN networks in capturing local information and Transformer networks in integrating global information,reducing computational costs while achieving excellent classification performance.Moreover,it uses the Cubic Embedding Self Attention(CESA)proposed in this paper to incorporate the channel code information,enhancing the classification performance within the Transformer structure.Finally,the RepBoTNet-CESA performs well in various AD-aided diagnosis tasks,with an accuracy of 96.58%,precision of 97.26%,and recall of 96.23%in the AD/NC task;an accuracy of 92.75%,precision of 92.84%,and recall of 93.18%in the EMCI/NC task;and an accuracy of 80.97%,precision of 83.86%,and recall of 80.91%in the AD/EMCI/LMCI/NC task.This demonstrates that RepBoTNet-CESA delivers outstanding outcomes in various AD-aided diagnostic tasks.Furthermore,our study has shown that MHSA exhibits superior performance compared to conventional attention mechanisms in enhancing ResNet performance.Besides,the Deeper RepBoTNet-CESA network fails to make further progress in AD-aided diagnostic tasks.
基金supported by the National Key Research and Development Program of China under Grant No.2018YFE0206900the National Natural Science Foundation of China under Grant No.61871440 and CAAI‐Huawei Mind-Spore Open Fund.
文摘Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shapes and sizes.The popular deep learning‐based segmentation algorithms generally rely on the convolutional neural network(CNN)and Transformer.The former cannot extract the global image features effectively while the latter lacks the inductive bias and involves the complicated computation for 3D volume data.The existing hybrid CNN‐Transformer network can only provide the limited performance improvement or even poorer segmentation performance than the pure CNN.To address these issues,a short‐term and long‐term memory self‐attention network is proposed.Firstly,a distinctive self‐attention block uses the Transformer to explore the correlation among the region features at different levels extracted by the CNN.Then,the memory structure filters and combines the above information to exclude the similar regions and detect the multiple tumours.Finally,the multi‐layer reconstruction blocks will predict the tumour boundaries.Experimental results demonstrate that our method outperforms other methods in terms of subjective visual and quantitative evaluation.Compared with the most competitive method,the proposed method provides Dice(82.4%vs.76.6%)and Hausdorff distance 95%(HD95)(10.66 vs.11.54 mm)on the KiTS19 as well as Dice(80.2%vs.78.4%)and HD95(9.632 vs.12.17 mm)on the LiTS.
基金support by the National Natural Science Foundation of China(NSFC)under grant number 61873274.
文摘Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines.
基金supported by the National Natural Science Foundation of China under Grant Nos.92163211,52002137,51872102,and 51802070the Fundamental Research Funds for the Central Universities under Grant Nos.2021XXJS008 and 2018KFYXKJC002Graduates’Innovation Fund,Huazhong University of Science and Technology under Grant No.2020yjs CXCY022
文摘Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damage in the dynamic service process,resulting in the formation of microcracks and performance degradation.Herein,we prepare a new hybrid hydrogel thermoelectric material PAAc/XG/Bi_(2)Se_(0.3)Te_(2.7)by an in situ polymerization method,which shows a high stretchable and self-healable performance,as well as a good thermoelectric performance.For the sample with Bi_(2)Se_(0.3)Te_(2.7)content of 1.5 wt%(i.e.,PAAc/XG/Bi2Se0.3Te27(1.5 wt%)),which has a room temperature Seebeck coefficient of-0.45 mV K^(-1),and exhibits an open-circuit voltage of-17.91 mV and output power of 38.1 nW at a temperature difference of 40 K.After being completely cut off,the hybrid thermoelectric hydrogel automatically recovers its electrical characteristics within a response time of 2.0 s,and the healed hydrogel remains more than 99%of its initial power output.Such stretchable and self-healable hybrid hydrogel thermoelectric materials show promising potential for application in dynamic service conditions,such as wearable electronics.
文摘BACKGROUND Endoscopic management is the first-line therapy for post-liver-transplant anas-tomotic strictures.Although the optimal duration of treatment with plastic stents has been reported to be 8-12 months,data on safety and duration for metal stents in this setting is scarce.Due to limited access to endoscopic retrograde cholan-giopancreatography(ERCP)during the coronavirus disease 2019 pandemic in our centre,there was a change in practice towards increased usage and length-of-stay of the Kaffes biliary intraductal self-expanding stent in patients with suitable anatomy.This was mainly due to the theoretical benefit of Kaffes stents allowing for longer indwelling periods compared to the traditional plastic stents.METHODS Adult liver transplant recipients aged 18 years and above who underwent ERCP were retrospectively identified during a 10-year period through a database query.Unplanned admissions post-Kaffes stent insertion were identified manually through electronic and scanned medical records.The main outcome was the incidence of complications when stents were left indwelling for 3 months vs 6 months.Stent efficacy was calculated via rates of stricture recurrence between patients that had stenting courses for≤120 d or>120 d.RESULTS During the study period,a total of 66 ERCPs with Kaffes insertion were performed in 54 patients throughout their stenting course.In 33 ERCPs,the stent was removed or exchanged on a 3-month interval.No pancreatitis,perfor-ations or deaths occurred.Minor post-ERCP complications were similar between the 3-month(abdominal pain and intraductal migration)and 6-month(abdominal pain,septic shower and embedded stent)groups-6.1%vs 9.1%respectively,P=0.40.All strictures resolved at the end of the stenting course,but the stenting course was variable from 3 to 22 months.The recurrence rate for stenting courses lasting for up to 120 d was 71.4%and 21.4%for stenting courses of 121 d or over(P=0.03).There were 28 patients that were treated with a single ERCP with Kaffes,21 with removal after 120 d and 7 within 120 d.There was a significant improvement in stricture recurrence when the Kaffes was removed after 120 d when a single ERCP was used for the entire stenting course(71.0%vs 10.0%,P=0.01).CONCLUSION Utilising a single Kaffes intraductal fully-covered metal stent for at least 4 months is safe and efficacious for the management of post-transplant anastomotic strictures.
文摘The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials, A<sub>μ</sub>. We assumed that the fundamental form of the Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-S<sub>μ</sub>)Ψ=0 should describe the stable particles (the electron, the proton and the dark-matter-particle (dmp)) bound to themselves under the action of their own potentials S<sub>μ</sub>. The new equation reveals that self energy is consequence of self action, it also reveals that the spin angular momentum is consequence of the dynamic structure of the stable particles. The quantitative results are the determination of their relative masses as well as the determination of the electromagnetic coupling constant.
基金Supported by the International Science and Technology Cooperation Project(2008DFA71750)the National Key Technology R&D Program(2008BAF32B00)~~
文摘A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is established based on the typical cutting condition combinations, and each of networks is corresponding to a typical cutting condition. For a specifie cutting condition, the fuzzy logic method is used to select an optimum trained SOM network. The proposed monitoring system, ealled the Fuzzy-SOM-TWC, is used to classify tool states based on the in-time measurement of force, aeoustic emission(AE), and motor eurrent signals. An approximate 98%--100% correct classification of tool-wear status is obtained by testing the system with a series data samples under freely selected cutting conditions.
文摘A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.
基金Supported by the National Natural Science Foundation of China(No.11372309,61304017)Science and Technology Development Plan Key Project of Jilin Province(No.20150204074GX)the Science and Technology Special Fund Project of Provincial Academy Cooperation(No.2017SYHZ00024)
文摘The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematical model for the coaxial twelve-rotor UAV is designed. Considering model uncertainties and external disturbances,a robust backstepping sliding mode control( BSMC) with self recurrent wavelet neural network( SRWNN) method is proposed as the attitude controller for the coaxial twelve-rotor. A combinative algorithm of backstepping control and sliding mode control has simplified design procedures with much stronger robustness benefiting from advantages of both controllers. SRWNN as the uncertainty observer is able to estimate the lumped uncertainties effectively.Then the uniformly ultimate stability of the twelve-rotor system is proved by Lyapunov stability theorem. Finally,the validity of the proposed robust control method adopted in the twelve-rotor UAV under model uncertainties and external disturbances are demonstrated via numerical simulations and twelve-rotor prototype experiments.
基金supported by the National Nature Science Foundation of China(Grant61572188)A Project Supported by Scientif ic Research Fund of Hunan Provincial Education Department(14A047)+4 种基金the Natural Science Foundation of Fujian Province(Grant no.2014J05079)the Young and Middle-Aged Teachers Education Scientific Research Project of Fujian province(Grant nos.JA13248JA14254 and JA15368)the special scientific research funding for colleges and universities from Fujian Provincial Education Department(Grant no.JK2013043)the Research Project supported by Xiamen University of Technology(YKJ15019R)
文摘Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are not set as primary design objectives.This makes data collection ability of vehicular nodes in real application environment inferior.By considering the features of nodes in wireless IoV,such as large scales of deployment,volatility and low time delay,an efficient data collection algorithm is proposed for mobile vehicle network environment.An adaptive sensing model is designed to establish vehicular data collection protocol.The protocol adopts group management in model communication.The vehicular sensing node in group can adjust network sensing chain according to sensing distance threshold with surrounding nodes.It will dynamically choose a combination of network sensing chains on basis of remaining energy and location characteristics of surrounding nodes.In addition,secure data collection between sensing nodes is undertaken as well.The simulation and experiments show that the vehicular node can realize secure and real-time data collection.Moreover,the proposed algorithm is superior in vehicular network life cycle,power consumption and reliability of data collection by comparing to other algorithms.
基金Supported by the National Natural Science Foundation of China(No.51975164)the China Scholarship Council(No.201908230358)the Fundamental Research Fundation for Universities of Heilongjiang Province。
文摘In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the transfer function of electro-hydraulic servo system,a kind of Pol-Ind friction model is proposed.The parameters of Pol-Ind friction model are identified and the accurate mathematical model of friction torque is obtained by experiment.The self-correcting wavelet neural network(WNN)controller is proposed,and Adam optimization algorithm is used to perform gradient optimization on scale factor and displacement factor in wavelet basis function,so as to improve the speed and precision of parameter optimization.Through comparative simulation analysis,it is clearly that the self-correcting WNN controller can effectively improve the frequency response and tracking accuracy of continuous rotary motor electro-hydraulic servo system.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61105086)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2010-MS-12)Hubei Province Natural Science Foundation(Grant No.2010CDB0 3405)
文摘The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.
基金Supported by the National Natural Science Foundation of China (No. 60671049, 61172168)and Graduate Innovation Project of Heilongjiang (No. YJSCX2011-034HLI)
文摘The real-valued self set in immunity-based network intrusion detection system (INIDS) has some defects: multi-area and overlapping, which are ignored before. The detectors generated by this kind of self set may have the problem of boundary holes between self and nonself regions, and the generation efficiency is low, so that, the self set needs to be optimized before generation stage. This paper proposes a self set optimization algorithm which uses the modified clustering algorithm and Gaussian distribution theory. The clustering deals with multi-area and the Gaussian distribution deals with the overlapping. The algorithm was tested by Iris data and real network data, and the results show that the optimized self set can solve the problem of boundary holes, increase the efficiency of detector generation effectively, and improve the system's detection rate.
基金National Natural Science Foundation of China,Grant/Award Numbers:11974303,12074332Qinglan Project of Jiangsu Province,Grant/Award Number:137050317the Interdisciplinary Research Project of Chemistry Discipline,Grant/Award Number:yzuxk202014 and High‐End Talent Program of Yangzhou University,Grant/Award Number:137080051。
文摘The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis.
基金Supported by the National 863 CIMS Project Foundation(863-511-010)Tianjin Natural Science Foundation(983602011)Backbone Young Teacher Project Foundation of Ministry of Education
文摘This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.