The thermal property is one of the key properties for the design of the high-level radioactive waste (HLW) repository. In this study, the thermal properties transient automatic tester (HPP-F) is uesd to study the ther...The thermal property is one of the key properties for the design of the high-level radioactive waste (HLW) repository. In this study, the thermal properties transient automatic tester (HPP-F) is uesd to study the thermal conductivity of multiphase composite buffer/backfill material including the type B-Z and B-Z-P (Here B、Z、P represents bentonite、zeolite and pyrite respectively,the same as in the following.) in different dry density and moisture conditions. The results show that for the same moisture content (dry density), thermal conductivity of specimens increases as the dry density (moisture content) increases. As a result, the type B-Z-P which is highly compacted of 1.8 g/cm3 in dry density and 17.65% in moisture content performs well, it meets the requirements of the IAEA and is easy to be compacted ,so it can be recommend as a alternative material of high level radioactive waste disposal repository buffer/backfilling materials.展开更多
Through changing the axial load on backfilling material compaction test to reflect different overlying strata pressure on backfilling material, the stress-strain relations in the compaction process of backfilling mate...Through changing the axial load on backfilling material compaction test to reflect different overlying strata pressure on backfilling material, the stress-strain relations in the compaction process of backfilling material under the geological condition can be obtained. Based on the characteristic of overlying strata movement in backfill mining, a model of roof thin plate is established. By introducing the stress-strain relation in compaction process into the model and using RIZT method to analyze the bending deformation of roof, the bending deflection and stress distribution can be obtained. The results show that the maximum roof subsidence and maximum tensile stress occurring at the center are 255 mm and5 MPa, respectively. Tensile fracture of roof under the geological condition of Dongping Mine did not occur. The dynamic measurement results of roof in Dongping Mine verify the theoretical result from the aforementioned model, thereby suggesting the roof mechanical model is reliable. The roof thin plate model based on the compaction characteristic of backfilling material in this study is of importance to research on backfill mining theories and application of backfilling material characteristics.展开更多
文摘The thermal property is one of the key properties for the design of the high-level radioactive waste (HLW) repository. In this study, the thermal properties transient automatic tester (HPP-F) is uesd to study the thermal conductivity of multiphase composite buffer/backfill material including the type B-Z and B-Z-P (Here B、Z、P represents bentonite、zeolite and pyrite respectively,the same as in the following.) in different dry density and moisture conditions. The results show that for the same moisture content (dry density), thermal conductivity of specimens increases as the dry density (moisture content) increases. As a result, the type B-Z-P which is highly compacted of 1.8 g/cm3 in dry density and 17.65% in moisture content performs well, it meets the requirements of the IAEA and is easy to be compacted ,so it can be recommend as a alternative material of high level radioactive waste disposal repository buffer/backfilling materials.
基金financial assistance provided by the National Natural Science Foundation of China(No.51304206)China Postdoctoral Science Foundation funded project(No.2015M580492)
文摘Through changing the axial load on backfilling material compaction test to reflect different overlying strata pressure on backfilling material, the stress-strain relations in the compaction process of backfilling material under the geological condition can be obtained. Based on the characteristic of overlying strata movement in backfill mining, a model of roof thin plate is established. By introducing the stress-strain relation in compaction process into the model and using RIZT method to analyze the bending deformation of roof, the bending deflection and stress distribution can be obtained. The results show that the maximum roof subsidence and maximum tensile stress occurring at the center are 255 mm and5 MPa, respectively. Tensile fracture of roof under the geological condition of Dongping Mine did not occur. The dynamic measurement results of roof in Dongping Mine verify the theoretical result from the aforementioned model, thereby suggesting the roof mechanical model is reliable. The roof thin plate model based on the compaction characteristic of backfilling material in this study is of importance to research on backfill mining theories and application of backfilling material characteristics.