Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- a...Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.展开更多
Ship resistance issues are related to fuel economy,speed,and cost efficiency.Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent bou...Ship resistance issues are related to fuel economy,speed,and cost efficiency.Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent boundary layer and thereby reduce hull friction.In this paper,the objective is to identify the optimum type of air lubrication using microbubble drag reduction(MBDR)and air layer drag reduction(ALDR)techniques to reduce the resistance of a 56-m Indonesian self-propelled barge(SPB).A model with the following dimensions was constructed:length L=2000 mm,breadth B=521.60 mm,and draft T=52.50 mm.The ship model was towed using standard towing tank experimental parameters.The speed was varied over the Froude number range 0.11–0.31.The air layer flow rate was varied at 80,85,and 90 standard liters per minute(SLPM)and the microbubble injection coefficient over the range 0.20–0.60.The results show that the ship model using the air layer had the highest drag reduction up to a maximum of 90%.Based on the characteristics of the SPB,which operates at low speed,the optimum air lubrication type to reduce resistance in this instance is ALDR.展开更多
The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained b...The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained by the method was compared with that obtained by the traditional method.It indicates that the two results are in good agreement.展开更多
In this paper, we investigate the self-propelled particles confined on a spherical substrate and explore the structural and dynamic properties of self-propelled particles by controlling the packing fraction and activi...In this paper, we investigate the self-propelled particles confined on a spherical substrate and explore the structural and dynamic properties of self-propelled particles by controlling the packing fraction and activity. We find that these self-propelled particles freeze into the crystal with the increase in the packing fraction. We observe the pattern evolution of inevitable topological defects due to the geometric constraints of the spherical substrate. During the process of freezing, there is a transition from twelve isolated grain boundaries to the uniform distribution of defects with the increase in the self-propelled velocity. Finally, we establish a phase diagram of the freezing process. These results may deepen our understanding of active particles in complex and crowded environments.展开更多
In this paper, a model that combines the lattice Boltzmann method with the singularity distribution method is proposed to simulate a self-propelled particle swimming(exhibiting translation and rotation) in a channel...In this paper, a model that combines the lattice Boltzmann method with the singularity distribution method is proposed to simulate a self-propelled particle swimming(exhibiting translation and rotation) in a channel flow. The results show that the velocity distribution for a self-propelled particle swimming deviates from a Maxwellian distribution and exhibits highvelocity tails. The influence of an eccentric potential doublet on the translation velocity of the particle is significant. The velocity decay process can be described using a double exponential model form. No large differences in the velocity distribution were observed for different translation Reynolds numbers, rotation Reynolds numbers, or regular intervals.展开更多
Shear stress-displacement relationship model of soil is very important to predict the tractive performance of tracked vehicle. Most shear stress-displacement models were proposed for terrestrial field.However,they are...Shear stress-displacement relationship model of soil is very important to predict the tractive performance of tracked vehicle. Most shear stress-displacement models were proposed for terrestrial field.However,they are not suit for soft seafloor with flow surface and high water content. Based on comprehensive analysis of seafloor soil shear deformation and track segment shear tests,a new empirical model of shear stressdisplacement relationship for saturated soft-plastic soil(SSP model) was proposed. To validate the SSP model and evaluate potential tractive force of self-propelled seafloor trencher,a test platform,where track segment shear test and drawbar pull test can be performed in seafloor soil substitute(bentonite water mixture),was built. Series of shear tests were carried out. Test results show that the SSP model can describe the mechanical behavior of track segment in seafloor soil substitute with good approximation. Through analyzing the main external forces,including environmental loads from seafloor soil and sea current applied to seafloor tracked trencher during the trenching process in a straight line,drawbar pull analysis model was deduced with the SSP model. A scale test model of seafloor tracked trencher was built,and the verification tests for drawbar pull analysis model were designed and carried out. Results of verification tests indicate that the drawbar pull analysis model was feasible and effective. The drawbar pull tests also indicated that the SSP model is valid from another side.展开更多
The traditional way of installing large vessels has always been to employ the use of cranes. The Water Handling Debottlenecking Project team has, instead, made use of a different technology—employing a Self-Propelled...The traditional way of installing large vessels has always been to employ the use of cranes. The Water Handling Debottlenecking Project team has, instead, made use of a different technology—employing a Self-Propelled Modular Transporter (SPMT) to install nine vessels in situ. These SPMT units have many advantages over crane installations, such as safety and efficiency, not to mention lower costs due to their self-propelled capabilities.展开更多
A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothe...A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.展开更多
In this paper,the overall structure design of the Ethernet-based and distributed simulation system for propelling(AAA) fire control is proposed with introducing the concept of system self-configuring pattern.The advan...In this paper,the overall structure design of the Ethernet-based and distributed simulation system for propelling(AAA) fire control is proposed with introducing the concept of system self-configuring pattern.The advantage of this system self-configuring pattern is easy and flexible to configure the modules of the simulation system without doing much more reprogramming work,when the simulation system is needed to add or reduced the modules and simulation computers,and the scale of simulation system is needed to changed.Also the system is structured with standardized and modularized design procedures on the Windows OS platform.展开更多
基金supported by the National Natural Science Foundation of China(10172095 and 10672183)
文摘Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.
文摘Ship resistance issues are related to fuel economy,speed,and cost efficiency.Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent boundary layer and thereby reduce hull friction.In this paper,the objective is to identify the optimum type of air lubrication using microbubble drag reduction(MBDR)and air layer drag reduction(ALDR)techniques to reduce the resistance of a 56-m Indonesian self-propelled barge(SPB).A model with the following dimensions was constructed:length L=2000 mm,breadth B=521.60 mm,and draft T=52.50 mm.The ship model was towed using standard towing tank experimental parameters.The speed was varied over the Froude number range 0.11–0.31.The air layer flow rate was varied at 80,85,and 90 standard liters per minute(SLPM)and the microbubble injection coefficient over the range 0.20–0.60.The results show that the ship model using the air layer had the highest drag reduction up to a maximum of 90%.Based on the characteristics of the SPB,which operates at low speed,the optimum air lubrication type to reduce resistance in this instance is ALDR.
文摘The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained by the method was compared with that obtained by the traditional method.It indicates that the two results are in good agreement.
基金Project supported by the National Natural Science Foundation of China(Nos.11622222,11472271,and 11872357)the Thousand Young Talents Program of China+1 种基金the Fundamental Research Fund for the Central Universitiesthe Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB22040403)
文摘In this paper, we investigate the self-propelled particles confined on a spherical substrate and explore the structural and dynamic properties of self-propelled particles by controlling the packing fraction and activity. We find that these self-propelled particles freeze into the crystal with the increase in the packing fraction. We observe the pattern evolution of inevitable topological defects due to the geometric constraints of the spherical substrate. During the process of freezing, there is a transition from twelve isolated grain boundaries to the uniform distribution of defects with the increase in the self-propelled velocity. Finally, we establish a phase diagram of the freezing process. These results may deepen our understanding of active particles in complex and crowded environments.
基金supported by the National Natural Science Foundation of China(Grant No.11632016)
文摘In this paper, a model that combines the lattice Boltzmann method with the singularity distribution method is proposed to simulate a self-propelled particle swimming(exhibiting translation and rotation) in a channel flow. The results show that the velocity distribution for a self-propelled particle swimming deviates from a Maxwellian distribution and exhibits highvelocity tails. The influence of an eccentric potential doublet on the translation velocity of the particle is significant. The velocity decay process can be described using a double exponential model form. No large differences in the velocity distribution were observed for different translation Reynolds numbers, rotation Reynolds numbers, or regular intervals.
文摘Shear stress-displacement relationship model of soil is very important to predict the tractive performance of tracked vehicle. Most shear stress-displacement models were proposed for terrestrial field.However,they are not suit for soft seafloor with flow surface and high water content. Based on comprehensive analysis of seafloor soil shear deformation and track segment shear tests,a new empirical model of shear stressdisplacement relationship for saturated soft-plastic soil(SSP model) was proposed. To validate the SSP model and evaluate potential tractive force of self-propelled seafloor trencher,a test platform,where track segment shear test and drawbar pull test can be performed in seafloor soil substitute(bentonite water mixture),was built. Series of shear tests were carried out. Test results show that the SSP model can describe the mechanical behavior of track segment in seafloor soil substitute with good approximation. Through analyzing the main external forces,including environmental loads from seafloor soil and sea current applied to seafloor tracked trencher during the trenching process in a straight line,drawbar pull analysis model was deduced with the SSP model. A scale test model of seafloor tracked trencher was built,and the verification tests for drawbar pull analysis model were designed and carried out. Results of verification tests indicate that the drawbar pull analysis model was feasible and effective. The drawbar pull tests also indicated that the SSP model is valid from another side.
文摘The traditional way of installing large vessels has always been to employ the use of cranes. The Water Handling Debottlenecking Project team has, instead, made use of a different technology—employing a Self-Propelled Modular Transporter (SPMT) to install nine vessels in situ. These SPMT units have many advantages over crane installations, such as safety and efficiency, not to mention lower costs due to their self-propelled capabilities.
基金We are grateful to the National Natural Science Foundation of China (No. 20573098)
文摘A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.
文摘In this paper,the overall structure design of the Ethernet-based and distributed simulation system for propelling(AAA) fire control is proposed with introducing the concept of system self-configuring pattern.The advantage of this system self-configuring pattern is easy and flexible to configure the modules of the simulation system without doing much more reprogramming work,when the simulation system is needed to add or reduced the modules and simulation computers,and the scale of simulation system is needed to changed.Also the system is structured with standardized and modularized design procedures on the Windows OS platform.