On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method...On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.展开更多
This article employs a combined approach of biology and economics to reveal that biological evolution has an economic nature, evolving towards improved energy efficiency. The orthodox Darwinian theory of evolution des...This article employs a combined approach of biology and economics to reveal that biological evolution has an economic nature, evolving towards improved energy efficiency. The orthodox Darwinian theory of evolution describes evolution as the random variation of organisms and their survival through natural selection. In fact, the natural environment itself is a constantly changing context, and the strategy to adapt to this change is to enhance behavioral capabilities, thereby expanding the range and dimensions of behavior. Therefore, the improvement of behavioral capabilities is an important aspect of evolution. The enhancement of behavioral capabilities expands the range of adaptation to the natural environment and increases the space for behavioral choices. Within this space of behavioral choices, some options are more effective and superior to others;thus, the ability to select is necessary to make the improved behavioral capabilities more beneficial to the organism itself. The birth and development of the brain serve the purpose of selection. By using the brain to make selections, at least the “better” behavior will be chosen between two alternatives. Once the better behavior yields better results, and the organism can associate these results with the corresponding behavior, it will persist in this behavior. The persistent repetition of a behavior over generations will form a habit. Habits passed down through generations constitute a new environment, causing the organism’s genes to activate or deactivate certain functions, ultimately leading to genetic changes that are beneficial to that habit. Since the brain’s selection represents the organism’s self-selection, it differs from random variation;it is also a rational selection, choosing behaviors that either obtain more energy or reduce energy consumption. Thus, this evolution possesses an economic nature.展开更多
A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced i...A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced into the standard geometric homogeneity.Different from the existing geometric homogeneity method,both state variables and their derivatives are considered to bring a reasonable effective switching condition.As a result,a faster convergence rate of state variables is achieved.Furthermore,based on the integral sliding mode(ISM)and above geometric homogeneity,a self-adapting high-order sliding mode(HOSM)control law is proposed for a class of nonlinear systems with uncertainties.The resulting controller allows the closed-loop system to conduct with the expected properties of strong robustness and fast convergence.Stable analysis of the nonlinear system is also proved based on the Lyapunov approach.The effectiveness of the resulting controller is verified by several simulation results.展开更多
BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increa...BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increasing number of people have improved their appearance and physical shape through aesthetic plastic surgery.The female breast plays a significant role in physical beauty,and droopy or atrophied breasts can frequently lead to psychological inferiority and lack of confidence in women.This,in turn,can affect their mental health and quality of life.AIM To analyze preoperative and postoperative self-image pressure-level changes of autologous fat breast augmentation patients and their impact on social adaptability.METHODS We selected 160 patients who underwent autologous fat breast augmentation at the First Affiliated Hospital of Xinxiang Medical University from January 2020 to December 2022 using random sampling method.The general information,selfimage pressure level,and social adaptability of the patients were investigated using a basic information survey,body image self-assessment scale,and social adaptability scale.The self-image pressure-level changes and their effects on the social adaptability of patients before and after autologous fat breast augmentation were analyzed.RESULTS We collected 142 valid questionnaires.The single-factor analysis results showed no statistically significant difference in the self-image pressure level and social adaptability score of patients with different ages,marital status,and monthly income.However,there were significant differences in social adaptability among patients with different education levels and employment statuses.The correlation analysis results revealed a significant correlation between the self-image pressure level and social adaptability score before and after surgery.Multiple factors analysis results showed that the degree of concern caused by appearance in selfimage pressure,the degree of possible behavioral intervention,the related distress caused by body image,and the influence of body image on social life influenced the social adaptability of autologous fat breast augmentation patients.CONCLUSION The self-image pressure on autologous fat breast augmentation patients is inversely proportional to their social adaptability.展开更多
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh...Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.展开更多
Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat...Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.展开更多
The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to...The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to realize the self adapting incremental press bending by adopting the feature line equation. The feature line equation, which is based on the database of the status of practical processes, can be adjusted in time, and the forming precision can be improved. It is important to correctly select and reasonably predict the feature line equations to enhance the accuracy of the incremental press bending based on the feature line database and algorithm. The determination of the feature line equation settles necessary data foundation for further research on the database of self-adapting incremental press bending, and it supplies a new clue for the development of self-adapting incremental press bending.展开更多
A new admission control algorithm considering the network self-similar access characteristics is proposed. Taking advantage of the mathematical model of the network traffic admission control which can effectively over...A new admission control algorithm considering the network self-similar access characteristics is proposed. Taking advantage of the mathematical model of the network traffic admission control which can effectively overcome the self-similar characteristics of the network requests, through the scheduling of the differential service qucue based on priority while at the same time taking into account various factors including access characteristics of requests, load information, etc, smoothness of the admission control is ensured by the algorithm proposed in this paper. We design a non-linear self-adapting control algorithm by introducing an exponential admission function, thus overcomes the negative aspects introduced by static threshold parameters. Simulation results show that the scheme proposed in this paper can effectively improve the resource utilization of the clusters, while at the same time protecting the service with high priority. Our simulation results also show that this algorithm can improve system stability and reliability too. Key words Web cluster - admission control - differential service - self-similar - self-adapting CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (10375024) and the Hunan Natural Science Foundation of China(03JJY4054)Biography: LIU An-feng(1971-), male, Ph. D candidate, majoring in network computing, Web QoS.展开更多
A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the...A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the model reference adaptive control law is designed and an adaptive compensator is used for improving its self-re- pairing capability. To enhance anti-interference capability of helicopter, quantum control feedforward is added be- tween fault and disturbance. Simulation results illustrate the effectiveness and feasibility of the approach.展开更多
With an aim at the job-shop scheduling problem of multiple resource constraints, this paper presents mixed self-adapting Genetic Algorithm ( GA ) , and establishes a job-shop optimal scheduling model of multiple res...With an aim at the job-shop scheduling problem of multiple resource constraints, this paper presents mixed self-adapting Genetic Algorithm ( GA ) , and establishes a job-shop optimal scheduling model of multiple resource constraints based on the effect of priority scheduling rules in the heuristic algorithm upon the scheduling target. New coding regulations or rules are designed. The sinusoidal function is adopted as the self-adapting factor, thus making cross probability and variable probability automatically change with group adaptability in such a way as to overcome the shortcoming in the heuristic algorithm and common GA, so that the operation efficiency is improved. The results from real example simulation and comparison with other algorithms indicate that the mixed self-adapting GA algorithm can well solve the job-shop optimal scheduling problem under the constraints of various kinds of production resources such as machine-tools and cutting tools.展开更多
A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no...A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.展开更多
As a high quality seismic imaging method, full waveform inversion (FWI) can accurately reconstruct the physical parameter model for the subsurface medium. However, application of the FWI in seismic data processing i...As a high quality seismic imaging method, full waveform inversion (FWI) can accurately reconstruct the physical parameter model for the subsurface medium. However, application of the FWI in seismic data processing is computationally expensive, especially for the three-dimension complex medium inversion. Introducing blended source technology into the frequency-domain FWI can greatly reduce the computational burden and improve the efficiency of the inversion. However, this method has two issues: first, crosstalk noise is caused by interference between the sources involved in the encoding, resulting in an inversion result with some artifacts; second, it is more sensitive to ambient noise compared to conventional FWI, therefore noisy data results in a poor inversion. This paper introduces a frequency-group encoding method to suppress crosstalk noise, and presents a frequency- domain auto-adapting FWI based on source-encoding technology. The conventional FWI method and source-encoding based FWI method are combined using an auto-adapting mechanism. This improvement can both guarantee the quality of the inversion result and maximize the inversion efficiency.展开更多
The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control Sy...The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.展开更多
Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source charac...Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source characterization an alternative methodology to the methodologies proposed earlier is developed. This methodology, Adaptive Surrogate Modeling Based Optimization (ASMBO) uses the capabilities of Self Organizing Map (SOM) algorithm to design the surrogate models and adaptive surrogate models for source characterization. The most important advantage of this methodology is its direct utilization for groundwater contaminant characterization without the necessity of utilizing a linked simulation optimization model. The validation of the SOM based surrogate models and SOM based adaptive surrogate models demonstrates that the quantity and quality of initial sample sizes have crucial role on the accuracy of solutions as the designed monitoring locations. The performance evaluation results of the proposed methodology are obtained using error free and erroneous concentration measurement data. These results demonstrate that the developed methodology could approximate groundwater flow and transport simulation models, and substitute the optimization model for characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity.展开更多
Purpose:This study aimed to investigate the current status of self-differentiation and professional adaptability among undergraduate nursing students,to analyze the relationship between these two variables,and to prov...Purpose:This study aimed to investigate the current status of self-differentiation and professional adaptability among undergraduate nursing students,to analyze the relationship between these two variables,and to provide recommendations for nursing educators.Methods:A total of 341 nursing undergraduate students at the University of South China were investigated using the Differentiation of Self Inventory and the Professional Adaptability Scale for college students.Results:The mean scores of self-differentiation and professional adaptability were 3.70±0.60 and 2.87±0.37,respectively,and the two variables were positively correlated(P<0.01).Conclusion:The level of self-differentiation of undergraduate nursing studentsaffects their professional adaptability.Nursing educators should consider the characteristics of self-differentiation of undergraduate nursing students in developing measures to improve their professional adaptability.展开更多
The adapting Runge-Kutta methods with a new interpolation procedure to delay differential equations was introduced by K.J. in't Hout in 1992[1], he proved that the numerical process, satisfies an important asympto...The adapting Runge-Kutta methods with a new interpolation procedure to delay differential equations was introduced by K.J. in't Hout in 1992[1], he proved that the numerical process, satisfies an important asymptotic stability condition. In this paper the convergence of this method under the asymptotic stability and other conditions in theorem 3 is proved.展开更多
A portfolio of new energy technologies has emerged in the first decade of the 21st Century, and many of them could be used for re-structuring the energy sector towards Sustainable Development. A key subject in this qu...A portfolio of new energy technologies has emerged in the first decade of the 21st Century, and many of them could be used for re-structuring the energy sector towards Sustainable Development. A key subject in this quest is the future of automobile, with possibilities on powering ranging from biofuels to Hydrogen Cars (HC), to Electric Vehicles (EV). In turn, the latter is closely connected with the need to deploy Renewable Energies (RE) for electricity generation. Within such new situation, countries and governments are aware that there are new tools for fighting Global Warming (GW), and new policies could be established for winning this battle against CO2. All these initiatives will affect the future of energy corporations, notably hydrocarbon companies;and it should be noted that it will be difficult for the companies to define long-term strategies if energy policies convey upheavals, sudden changes in promoting alternatives and interruptions on activities. Hence, it is very important to adopt energy policies allowing a smooth evolution of the companies’ activities to the new energy model. After analyzing the alternatives with a forecasting-backcasting methodology, an “eclectic approach” is proposed, with the Plug-in Hybrid car with Flexible Fuel (PiHFF) as the central paradigm in the coming promoting policies.展开更多
Existing research on image classification mainly used the artificial definition as the pre-training of the original image,which cost a lot of time on adjusting parameters.However,the depth of learning algorithm intend...Existing research on image classification mainly used the artificial definition as the pre-training of the original image,which cost a lot of time on adjusting parameters.However,the depth of learning algorithm intends to make the computers automatically choose the most suitable features in the training process.The substantial of deep learning is to train mass data and obtain an accurate classification or prediction without any artificial work by constructing a multi-hidden-layer model.However,current deep learning model has problems of local minimums when choosing a constant learning rate to solve non-convex objective cost function in model training.This paper proposes an algorithm based on the Stacked Denoising Autoencoders(SDA)to solve this problem,and gives a contrast of different layer designs to test the performance.A MNIST database of handwritten digits is used to verify the effectiveness of this model..展开更多
An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the ...An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the positionbased visual servo technique which exploits the singular value property of the essential matrix. Specifically, a suitable dynamic online cost function is generated according to the property of the three singular values. The visual servo process is carried out simultaneous to the dynamic self-calibration, and then the cost function is minimized using the adaptive genetic algorithm instead of the gradient descent method in G. Chesi's approach. Moreover, this method overcomes the limitation that the initial parameters must be selected close to the true value, which is not constant in many cases. It is not necessary to know exactly the camera intrinsic parameters when using our approach, instead, coarse coding bounds of the five parameters are enough for the algorithm, which can be done once and for all off-line. Besides, this algorithm does not require knowledge of the 3D model of the object. Simulation experiments are carried out and the results demonstrate that the proposed approach provides a fast convergence speed and robustness against unpredictable perturbations of camera parameters, and it is an effective and efficient visual servo algorithm.展开更多
基金National Natural Science Foundation of China (50073002)
文摘On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.
文摘This article employs a combined approach of biology and economics to reveal that biological evolution has an economic nature, evolving towards improved energy efficiency. The orthodox Darwinian theory of evolution describes evolution as the random variation of organisms and their survival through natural selection. In fact, the natural environment itself is a constantly changing context, and the strategy to adapt to this change is to enhance behavioral capabilities, thereby expanding the range and dimensions of behavior. Therefore, the improvement of behavioral capabilities is an important aspect of evolution. The enhancement of behavioral capabilities expands the range of adaptation to the natural environment and increases the space for behavioral choices. Within this space of behavioral choices, some options are more effective and superior to others;thus, the ability to select is necessary to make the improved behavioral capabilities more beneficial to the organism itself. The birth and development of the brain serve the purpose of selection. By using the brain to make selections, at least the “better” behavior will be chosen between two alternatives. Once the better behavior yields better results, and the organism can associate these results with the corresponding behavior, it will persist in this behavior. The persistent repetition of a behavior over generations will form a habit. Habits passed down through generations constitute a new environment, causing the organism’s genes to activate or deactivate certain functions, ultimately leading to genetic changes that are beneficial to that habit. Since the brain’s selection represents the organism’s self-selection, it differs from random variation;it is also a rational selection, choosing behaviors that either obtain more energy or reduce energy consumption. Thus, this evolution possesses an economic nature.
基金supported by the National Natural Science Foundation of China(61433003,60904003,11602019).
文摘A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced into the standard geometric homogeneity.Different from the existing geometric homogeneity method,both state variables and their derivatives are considered to bring a reasonable effective switching condition.As a result,a faster convergence rate of state variables is achieved.Furthermore,based on the integral sliding mode(ISM)and above geometric homogeneity,a self-adapting high-order sliding mode(HOSM)control law is proposed for a class of nonlinear systems with uncertainties.The resulting controller allows the closed-loop system to conduct with the expected properties of strong robustness and fast convergence.Stable analysis of the nonlinear system is also proved based on the Lyapunov approach.The effectiveness of the resulting controller is verified by several simulation results.
文摘BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increasing number of people have improved their appearance and physical shape through aesthetic plastic surgery.The female breast plays a significant role in physical beauty,and droopy or atrophied breasts can frequently lead to psychological inferiority and lack of confidence in women.This,in turn,can affect their mental health and quality of life.AIM To analyze preoperative and postoperative self-image pressure-level changes of autologous fat breast augmentation patients and their impact on social adaptability.METHODS We selected 160 patients who underwent autologous fat breast augmentation at the First Affiliated Hospital of Xinxiang Medical University from January 2020 to December 2022 using random sampling method.The general information,selfimage pressure level,and social adaptability of the patients were investigated using a basic information survey,body image self-assessment scale,and social adaptability scale.The self-image pressure-level changes and their effects on the social adaptability of patients before and after autologous fat breast augmentation were analyzed.RESULTS We collected 142 valid questionnaires.The single-factor analysis results showed no statistically significant difference in the self-image pressure level and social adaptability score of patients with different ages,marital status,and monthly income.However,there were significant differences in social adaptability among patients with different education levels and employment statuses.The correlation analysis results revealed a significant correlation between the self-image pressure level and social adaptability score before and after surgery.Multiple factors analysis results showed that the degree of concern caused by appearance in selfimage pressure,the degree of possible behavioral intervention,the related distress caused by body image,and the influence of body image on social life influenced the social adaptability of autologous fat breast augmentation patients.CONCLUSION The self-image pressure on autologous fat breast augmentation patients is inversely proportional to their social adaptability.
文摘Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
基金This work was supported by the National Natural Science Foundation of China(No.60375001)the High School Doctoral Foundation of China(NO.20030532004).
文摘Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.
文摘The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to realize the self adapting incremental press bending by adopting the feature line equation. The feature line equation, which is based on the database of the status of practical processes, can be adjusted in time, and the forming precision can be improved. It is important to correctly select and reasonably predict the feature line equations to enhance the accuracy of the incremental press bending based on the feature line database and algorithm. The determination of the feature line equation settles necessary data foundation for further research on the database of self-adapting incremental press bending, and it supplies a new clue for the development of self-adapting incremental press bending.
文摘A new admission control algorithm considering the network self-similar access characteristics is proposed. Taking advantage of the mathematical model of the network traffic admission control which can effectively overcome the self-similar characteristics of the network requests, through the scheduling of the differential service qucue based on priority while at the same time taking into account various factors including access characteristics of requests, load information, etc, smoothness of the admission control is ensured by the algorithm proposed in this paper. We design a non-linear self-adapting control algorithm by introducing an exponential admission function, thus overcomes the negative aspects introduced by static threshold parameters. Simulation results show that the scheme proposed in this paper can effectively improve the resource utilization of the clusters, while at the same time protecting the service with high priority. Our simulation results also show that this algorithm can improve system stability and reliability too. Key words Web cluster - admission control - differential service - self-similar - self-adapting CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (10375024) and the Hunan Natural Science Foundation of China(03JJY4054)Biography: LIU An-feng(1971-), male, Ph. D candidate, majoring in network computing, Web QoS.
基金Supported by the National Natural Science Foundation of China(61074080)the Innovation Foundation for Aeronautical Science and Technology(08C52001)~~
文摘A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the model reference adaptive control law is designed and an adaptive compensator is used for improving its self-re- pairing capability. To enhance anti-interference capability of helicopter, quantum control feedforward is added be- tween fault and disturbance. Simulation results illustrate the effectiveness and feasibility of the approach.
基金This paper is supported by Shaanxi Natural Science Foundation of China under Grant No2004E202
文摘With an aim at the job-shop scheduling problem of multiple resource constraints, this paper presents mixed self-adapting Genetic Algorithm ( GA ) , and establishes a job-shop optimal scheduling model of multiple resource constraints based on the effect of priority scheduling rules in the heuristic algorithm upon the scheduling target. New coding regulations or rules are designed. The sinusoidal function is adopted as the self-adapting factor, thus making cross probability and variable probability automatically change with group adaptability in such a way as to overcome the shortcoming in the heuristic algorithm and common GA, so that the operation efficiency is improved. The results from real example simulation and comparison with other algorithms indicate that the mixed self-adapting GA algorithm can well solve the job-shop optimal scheduling problem under the constraints of various kinds of production resources such as machine-tools and cutting tools.
基金supported by the National Natural Science Foundation of China (7060103570801062)
文摘A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.
基金financially supported by the National Natural Science Foundation of China(No.41074075/D0409)the National Science and Technology Major Project(No.2011ZX05025-001-04)
文摘As a high quality seismic imaging method, full waveform inversion (FWI) can accurately reconstruct the physical parameter model for the subsurface medium. However, application of the FWI in seismic data processing is computationally expensive, especially for the three-dimension complex medium inversion. Introducing blended source technology into the frequency-domain FWI can greatly reduce the computational burden and improve the efficiency of the inversion. However, this method has two issues: first, crosstalk noise is caused by interference between the sources involved in the encoding, resulting in an inversion result with some artifacts; second, it is more sensitive to ambient noise compared to conventional FWI, therefore noisy data results in a poor inversion. This paper introduces a frequency-group encoding method to suppress crosstalk noise, and presents a frequency- domain auto-adapting FWI based on source-encoding technology. The conventional FWI method and source-encoding based FWI method are combined using an auto-adapting mechanism. This improvement can both guarantee the quality of the inversion result and maximize the inversion efficiency.
基金supported in part by National Natural Science Foundation of China(61533017,61273140,61304079,61374105,61379099,61233001)Fundamental Research Funds for the Central Universities(FRF-TP-15-056A3)the Open Research Project from SKLMCCS(20150104)
文摘The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.
文摘Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source characterization an alternative methodology to the methodologies proposed earlier is developed. This methodology, Adaptive Surrogate Modeling Based Optimization (ASMBO) uses the capabilities of Self Organizing Map (SOM) algorithm to design the surrogate models and adaptive surrogate models for source characterization. The most important advantage of this methodology is its direct utilization for groundwater contaminant characterization without the necessity of utilizing a linked simulation optimization model. The validation of the SOM based surrogate models and SOM based adaptive surrogate models demonstrates that the quantity and quality of initial sample sizes have crucial role on the accuracy of solutions as the designed monitoring locations. The performance evaluation results of the proposed methodology are obtained using error free and erroneous concentration measurement data. These results demonstrate that the developed methodology could approximate groundwater flow and transport simulation models, and substitute the optimization model for characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity.
基金We thank all the students who participated in our study.
文摘Purpose:This study aimed to investigate the current status of self-differentiation and professional adaptability among undergraduate nursing students,to analyze the relationship between these two variables,and to provide recommendations for nursing educators.Methods:A total of 341 nursing undergraduate students at the University of South China were investigated using the Differentiation of Self Inventory and the Professional Adaptability Scale for college students.Results:The mean scores of self-differentiation and professional adaptability were 3.70±0.60 and 2.87±0.37,respectively,and the two variables were positively correlated(P<0.01).Conclusion:The level of self-differentiation of undergraduate nursing studentsaffects their professional adaptability.Nursing educators should consider the characteristics of self-differentiation of undergraduate nursing students in developing measures to improve their professional adaptability.
文摘The adapting Runge-Kutta methods with a new interpolation procedure to delay differential equations was introduced by K.J. in't Hout in 1992[1], he proved that the numerical process, satisfies an important asymptotic stability condition. In this paper the convergence of this method under the asymptotic stability and other conditions in theorem 3 is proved.
文摘A portfolio of new energy technologies has emerged in the first decade of the 21st Century, and many of them could be used for re-structuring the energy sector towards Sustainable Development. A key subject in this quest is the future of automobile, with possibilities on powering ranging from biofuels to Hydrogen Cars (HC), to Electric Vehicles (EV). In turn, the latter is closely connected with the need to deploy Renewable Energies (RE) for electricity generation. Within such new situation, countries and governments are aware that there are new tools for fighting Global Warming (GW), and new policies could be established for winning this battle against CO2. All these initiatives will affect the future of energy corporations, notably hydrocarbon companies;and it should be noted that it will be difficult for the companies to define long-term strategies if energy policies convey upheavals, sudden changes in promoting alternatives and interruptions on activities. Hence, it is very important to adopt energy policies allowing a smooth evolution of the companies’ activities to the new energy model. After analyzing the alternatives with a forecasting-backcasting methodology, an “eclectic approach” is proposed, with the Plug-in Hybrid car with Flexible Fuel (PiHFF) as the central paradigm in the coming promoting policies.
基金supported by NSFC (Grant Nos. 61300181, 61202434)the Fundamental Research Funds for the Central Universities (Grant No. 2015RC23).
文摘Existing research on image classification mainly used the artificial definition as the pre-training of the original image,which cost a lot of time on adjusting parameters.However,the depth of learning algorithm intends to make the computers automatically choose the most suitable features in the training process.The substantial of deep learning is to train mass data and obtain an accurate classification or prediction without any artificial work by constructing a multi-hidden-layer model.However,current deep learning model has problems of local minimums when choosing a constant learning rate to solve non-convex objective cost function in model training.This paper proposes an algorithm based on the Stacked Denoising Autoencoders(SDA)to solve this problem,and gives a contrast of different layer designs to test the performance.A MNIST database of handwritten digits is used to verify the effectiveness of this model..
基金the National Natural Science Foundation of China (No.60675048)Science and Technology Research Project of the Ministry of Education (No.204181).
文摘An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the positionbased visual servo technique which exploits the singular value property of the essential matrix. Specifically, a suitable dynamic online cost function is generated according to the property of the three singular values. The visual servo process is carried out simultaneous to the dynamic self-calibration, and then the cost function is minimized using the adaptive genetic algorithm instead of the gradient descent method in G. Chesi's approach. Moreover, this method overcomes the limitation that the initial parameters must be selected close to the true value, which is not constant in many cases. It is not necessary to know exactly the camera intrinsic parameters when using our approach, instead, coarse coding bounds of the five parameters are enough for the algorithm, which can be done once and for all off-line. Besides, this algorithm does not require knowledge of the 3D model of the object. Simulation experiments are carried out and the results demonstrate that the proposed approach provides a fast convergence speed and robustness against unpredictable perturbations of camera parameters, and it is an effective and efficient visual servo algorithm.