In this paper, we introduce Farey triangle graph , Farey triangle matrix , complementary Farey triangle graph and complementary Farey triangle matrix , and we derive some properties of the following matrices.
The Wiener index W(G) of a graph G is defined as the sum of distances between all pairs of vertices of the graph, Let G*c, is the set of the complements of bipartite graphs with order n. In this paper, we character...The Wiener index W(G) of a graph G is defined as the sum of distances between all pairs of vertices of the graph, Let G*c, is the set of the complements of bipartite graphs with order n. In this paper, we characterize the graphs with the maximum and second-maximum Wiener indices among all the graphs in G*c, respectively.展开更多
互补产品推荐旨在为用户提供经常一起购买的产品,以满足共同的需求。现有的互补产品推荐方法大多考虑对产品的内容特性(视觉和文本内容)建模,而没有考虑用户购买产品的偏好。为此设计了一种融合用户偏好的互补产品推荐模型(complementar...互补产品推荐旨在为用户提供经常一起购买的产品,以满足共同的需求。现有的互补产品推荐方法大多考虑对产品的内容特性(视觉和文本内容)建模,而没有考虑用户购买产品的偏好。为此设计了一种融合用户偏好的互补产品推荐模型(complementary product recommendation models that integrate user preferences, CPRUP)。该模型首先计算产品之间图像和文本特征的互补关系;然后将知识图谱与注意力机制相结合,基于n-hop邻居挖掘用户历史购买产品之间的相关性,提出一种基于知识图谱的用户表征来提取用户对互补产品的偏好;最后基于神经网络实现互补关系与用户偏好的共同学习。使用Amazon数据集进行实验,提出的CPRUP模型与次优基线模型相比,ACC提升了5%,precision提升了4%,表明CPRUP模型可以更准确地为用户推荐互补产品。展开更多
文摘In this paper, we introduce Farey triangle graph , Farey triangle matrix , complementary Farey triangle graph and complementary Farey triangle matrix , and we derive some properties of the following matrices.
文摘The Wiener index W(G) of a graph G is defined as the sum of distances between all pairs of vertices of the graph, Let G*c, is the set of the complements of bipartite graphs with order n. In this paper, we characterize the graphs with the maximum and second-maximum Wiener indices among all the graphs in G*c, respectively.
文摘互补产品推荐旨在为用户提供经常一起购买的产品,以满足共同的需求。现有的互补产品推荐方法大多考虑对产品的内容特性(视觉和文本内容)建模,而没有考虑用户购买产品的偏好。为此设计了一种融合用户偏好的互补产品推荐模型(complementary product recommendation models that integrate user preferences, CPRUP)。该模型首先计算产品之间图像和文本特征的互补关系;然后将知识图谱与注意力机制相结合,基于n-hop邻居挖掘用户历史购买产品之间的相关性,提出一种基于知识图谱的用户表征来提取用户对互补产品的偏好;最后基于神经网络实现互补关系与用户偏好的共同学习。使用Amazon数据集进行实验,提出的CPRUP模型与次优基线模型相比,ACC提升了5%,precision提升了4%,表明CPRUP模型可以更准确地为用户推荐互补产品。