Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and thos...Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and those with high dynamic performance typically have low energy efficiency. In this paper, the variants of secondary control(VSC) with power recovery are developed to solve this problem for loading hydraulic driving devices that operate under variable pressure, unlike classical secondary control(CSC) that operates in constant pressure network. Hydrostatic secondary control units are used as the loading components, by which the absorbed mechanical power from the tested device is converted into hydraulic power and then fed back into the tested system through 4 types of feedback passages(FPs). The loading subsystem can operate in constant pressure network, controlled variable pressure network, or the same variable pressure network as that of the tested device by using different FPs. The 4 types of systems are defined, and their key techniques are analyzed, including work principle, simulating the work state of original tested device, static operation points, loading performance, energy efficiency, and control strategy, etc. The important technical merits of the 4 schemes are compared, and 3 of the schemes are selected, designed, simulated using AMESim and evaluated. The researching results show that the investigated systems can simulate the given loads effectively, realize the work conditions of the tested device, and furthermore attain a high power recovery efficiency that ranges from 0.54 to 0.85, even though the 3 schemes have different loading performances and energy efficiencies. This paper proposes several loading schemes that can achieve both high dynamic performance and high power recovery efficiency.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
In this paper, the extreme wave loads on an on-shore wave power device are investigated. First, boundary element method is applied to solve the three dimensional potential problem based on the small amplitude wave ass...In this paper, the extreme wave loads on an on-shore wave power device are investigated. First, boundary element method is applied to solve the three dimensional potential problem based on the small amplitude wave assumption. Then the motion of the Oscillating Water Column (OWC) inside the device and its laods on the device are calculated in time domain. Several protective techniques often applied are simulated by changing the constraint of the upper end of the chamber of the device. Numerical results are used to judge the effectiveness of these techniques. The investigation shows that damping can not effectively restrain the motion of OWC when the period of incident wave is long, which may cause dangerous loads on the structure. The shut chamber can effectively restrain the motion of OWC, but alternatively cause high pressure in the chamber. A Contracting opening with a Taper (CT) can exhaust a great amount of kinetic energy of OWC, and significantly decrease the loads. It is a promising protective technique.展开更多
Because of the limited memory of the increasing amount of information in current wearable devices,the processing capacity of the servers in the storage system can not keep up with the speed of information growth,resul...Because of the limited memory of the increasing amount of information in current wearable devices,the processing capacity of the servers in the storage system can not keep up with the speed of information growth,resulting in low load balancing,long load balancing time and data processing delay.Therefore,a data load balancing technology is applied to the massive storage systems of wearable devices in this paper.We first analyze the object-oriented load balancing method,and formally describe the dynamic load balancing issues,taking the load balancing as a mapping problem.Then,the task of assigning each data node and the request of the corresponding data node’s actual processing capacity are completed.Different data is allocated to the corresponding data storage node to complete the calculation of the comprehensive weight of the data storage node.According to the load information of each data storage node collected by the scheduler in the storage system,the load weight of the current data storage node is calculated and distributed.The data load balancing of the massive storage system for wearable devices is realized.The experimental results show that the average time of load balancing using this method is 1.75h,which is much lower than the traditional methods.The results show the data load balancing technology of the massive storage system of wearable devices has the advantages of short data load balancing time,high load balancing,strong data processing capability,short processing time and obvious application.展开更多
In this paper, a concept for the joint modeling of the device load and user intention is presented. It consists of two coupled models, a device load model to characterize the power consumption of an electric device of...In this paper, a concept for the joint modeling of the device load and user intention is presented. It consists of two coupled models, a device load model to characterize the power consumption of an electric device of interest, and a user intention model for describing the user intentions which cause the energy consumption. The advantage of this joint model is the ability to predict the device load from the user intention and to reconstruct the user intention from the measured device load. This opens a new way for load monitoring, simulation and prediction from the perspective of users instead of devices.展开更多
A new experimental device has been developed for analyzing compression load deflection of the door seal by using stereovision theory. Precision instruments of optical grating and force sensor are also integrated in th...A new experimental device has been developed for analyzing compression load deflection of the door seal by using stereovision theory. Precision instruments of optical grating and force sensor are also integrated in this device. Force-displacement response characteristics of compression at varied speed can be controlled. Solid foundations for characteristic and structure as well as optimization design of the car door seal are elucidated.展开更多
A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load de...A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load device, together with sensors and data loggers for detecting stress, deformation, and temperature changes. The system can accommodate soil blocks up to 3 m in length, 2.5 m in width, and 1 m in height. The lowest temperature provided by the refrigeration device is -20 ℃. The maximum load provided by the dynamic load device is 100 kN and the vibration fi'equency of the dynamic load can range from 0.1 to 10 Hz. A number of waveforms, such as sine waves, rectangular waves, triangle waves, and other user-defined waves can be generated by the dynamic load device controller.展开更多
The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the fin...The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria.展开更多
In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pres...In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pressures by using split Hopkinson pressure bar equipment with a confi ning pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confi ning pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that:(1) The characteristics of two rocks in the ascent stage of the stressstrain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confi ning pressure increases.(2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confi ning pressure effects are obvious.(3) Due to the effect of confi ning pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice.展开更多
This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested su...This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.展开更多
A new multifunctional testing device for rock fragmentation was introduced, which can conduct many experiments such as single cutting under static load, crushing under impact load, thrusting under static load and cutt...A new multifunctional testing device for rock fragmentation was introduced, which can conduct many experiments such as single cutting under static load, crushing under impact load, thrusting under static load and cutting-impact test under the dynamic and static load. The results of granite and concrete抯 experiments with polycrystalline diamond compact (PDC) flat cutters and carbide alloy cutters under different loadings show that the device has good performance, and the characteristics of broken rock under the combined loads are similar to that under the single static pressure or impact crushing the rock, and the combined loads can increase the effect of rock fragmentation obviously. The experimental methods and effects have the important meaning for studying new drill-ing tool on hard rock fragmentation.展开更多
Umbrella-type mud-water diversion labyrinth sedimentation device,which is characterized by the combination of two swash plate and wing plate into an umbrella type with a set angle,the angle range of the two swash plat...Umbrella-type mud-water diversion labyrinth sedimentation device,which is characterized by the combination of two swash plate and wing plate into an umbrella type with a set angle,the angle range of the two swash plate is 15º--100º,the vertical height of the swash plate is 60-70 mm,the parallel axis of the wing plate is the vertical direction,the height is 10-20 mm.the whole adopts the modular combination mode,and can be freely combined and disassembled according to different pond design,swash plate The interval(sedimentation distance)can be freely adjusted,mud take the mud road and water take the water road,to avoid the mutual interference of the water and mud road,to achieve the stability of the water quality.The turbidity of the sedimentation pond is low,stable in 0.3-2.0 NTU.展开更多
In Heterogeneous Networks (HetNets), Integrating Device-to-Device communication (D2D) techniques presents as a promising solution for improving system performance by offloading traffic from heavily loaded macro cell (...In Heterogeneous Networks (HetNets), Integrating Device-to-Device communication (D2D) techniques presents as a promising solution for improving system performance by offloading traffic from heavily loaded macro cell (MC) to small cells (SCs). For instance, D2D can be used to offload traffic from heavily-loaded cells to light-loaded small cells. However, offloading new users may result in an unfair load distribution among small cells and consequently may affect the quality of service of some users. To achieve better performance and reduce blocking probability load balancing among small cells should be considered when we offload traffic from macro to small cells. In this paper, we consider a centralized offloaded relay selection scheme, in which a cellular provider can decide whether users can assist each other to relay their traffic to small cells. We propose a joint user-relay selection with dynamic load balancing scheme based on D2D communications using the Kuhn-Munkres (K-M) method. The offloading process considers the load from MC to SCs and among SCs. Compared to previous works, our simulation results show that the proposed scheme increases the number of admitted users in the system, and achieves a higher load balancing fairness index among small cells. Also, our scheme achieves a higher rate fairness index among users by adjusting the signal to interference plus noise ratio (SINR) threshold.展开更多
Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to...Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.展开更多
Skin integrity breakdown and pressure ulcer formation on the heel are predictable and preventable healthcare occurrences. By minimizing surface contact pressures that can cause heel capillary occlusion, heel off-loadi...Skin integrity breakdown and pressure ulcer formation on the heel are predictable and preventable healthcare occurrences. By minimizing surface contact pressures that can cause heel capillary occlusion, heel off-loading devices help mitigate the risk of decubitus ulceration. The purpose of this study is to investigate the efficacy of six off-loading methods commonly used in clinical settings to decrease heel contact pressure. Pressure mapping is used to evaluate contact pressure at the heel for underweight, normal weight, and overweight simulations. Based upon averages across four trials, it is shown that all devices reduce heel contact pressure when compared to no off-load- ing. The PRUventor™ boot exhibits significantly lower average pressure values than other off-load- ing strategies tested, suggesting that the PRUventor™ is the most effective off-loading device. From the analysis of the experimental data and comparison to similar data for respective off-loading alternatives, it is concluded that the PRUventor™ boot is an effective heel off-loading device for use in clinical settings.展开更多
Hydrogen as a clean energy source is made full use, this paper researches the electrical model of PEMFC generator, analyzes the harmonic trend and its hazards when the generator operates with linear load and nonlinear...Hydrogen as a clean energy source is made full use, this paper researches the electrical model of PEMFC generator, analyzes the harmonic trend and its hazards when the generator operates with linear load and nonlinear load running synchronously, comparatively analyzes the commonly used harmonic suppression technology. Simulate and analyze the filter performance when APF is used. The results illustrate that as a filter device, APF can absorb the harmonic properly in PEMFC power system.展开更多
One of the most important issues in storage and transport processes is the formation of unit loads. Our main goal is to investigate the homogenization of unit load formation cases. We provide a model involving the maj...One of the most important issues in storage and transport processes is the formation of unit loads. Our main goal is to investigate the homogenization of unit load formation cases. We provide a model involving the major factors and parameters for the optimal selection of the unit load formations. Objective functions and constraints related to the basic tasks are formulated. We give a method for the selection of the optimal unit load formation equipment for a given number of products under given constraints.展开更多
Every day,more and more data is being produced by the Internet of Things(IoT)applications.IoT data differ in amount,diversity,veracity,and velocity.Because of latency,various types of data handling in cloud computing ...Every day,more and more data is being produced by the Internet of Things(IoT)applications.IoT data differ in amount,diversity,veracity,and velocity.Because of latency,various types of data handling in cloud computing are not suitable for many time-sensitive applications.When users move from one site to another,mobility also adds to the latency.By placing computing close to IoT devices with mobility support,fog computing addresses these problems.An efficient Load Balancing Algorithm(LBA)improves user experience and Quality of Service(QoS).Classification of Request(CoR)based Resource Adaptive LBA is suggested in this research.This technique clusters fog nodes using an efficient K-means clustering algorithm and then uses a Decision Tree approach to categorize the request.The decision-making process for time-sensitive and delay-tolerable requests is facilitated by the classification of requests.LBA does the operation based on these classifications.The MobFogSim simulation program is utilized to assess how well the algorithm with mobility features performs.The outcome demonstrates that the LBA algorithm’s performance enhances the total system performance,which was attained by(90.8%).Using LBA,several metrics may be examined,including Response Time(RT),delay(d),Energy Consumption(EC),and latency.Through the on-demand provisioning of necessary resources to IoT users,our suggested LBA assures effective resource usage.展开更多
文摘Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and those with high dynamic performance typically have low energy efficiency. In this paper, the variants of secondary control(VSC) with power recovery are developed to solve this problem for loading hydraulic driving devices that operate under variable pressure, unlike classical secondary control(CSC) that operates in constant pressure network. Hydrostatic secondary control units are used as the loading components, by which the absorbed mechanical power from the tested device is converted into hydraulic power and then fed back into the tested system through 4 types of feedback passages(FPs). The loading subsystem can operate in constant pressure network, controlled variable pressure network, or the same variable pressure network as that of the tested device by using different FPs. The 4 types of systems are defined, and their key techniques are analyzed, including work principle, simulating the work state of original tested device, static operation points, loading performance, energy efficiency, and control strategy, etc. The important technical merits of the 4 schemes are compared, and 3 of the schemes are selected, designed, simulated using AMESim and evaluated. The researching results show that the investigated systems can simulate the given loads effectively, realize the work conditions of the tested device, and furthermore attain a high power recovery efficiency that ranges from 0.54 to 0.85, even though the 3 schemes have different loading performances and energy efficiencies. This paper proposes several loading schemes that can achieve both high dynamic performance and high power recovery efficiency.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
文摘In this paper, the extreme wave loads on an on-shore wave power device are investigated. First, boundary element method is applied to solve the three dimensional potential problem based on the small amplitude wave assumption. Then the motion of the Oscillating Water Column (OWC) inside the device and its laods on the device are calculated in time domain. Several protective techniques often applied are simulated by changing the constraint of the upper end of the chamber of the device. Numerical results are used to judge the effectiveness of these techniques. The investigation shows that damping can not effectively restrain the motion of OWC when the period of incident wave is long, which may cause dangerous loads on the structure. The shut chamber can effectively restrain the motion of OWC, but alternatively cause high pressure in the chamber. A Contracting opening with a Taper (CT) can exhaust a great amount of kinetic energy of OWC, and significantly decrease the loads. It is a promising protective technique.
文摘Because of the limited memory of the increasing amount of information in current wearable devices,the processing capacity of the servers in the storage system can not keep up with the speed of information growth,resulting in low load balancing,long load balancing time and data processing delay.Therefore,a data load balancing technology is applied to the massive storage systems of wearable devices in this paper.We first analyze the object-oriented load balancing method,and formally describe the dynamic load balancing issues,taking the load balancing as a mapping problem.Then,the task of assigning each data node and the request of the corresponding data node’s actual processing capacity are completed.Different data is allocated to the corresponding data storage node to complete the calculation of the comprehensive weight of the data storage node.According to the load information of each data storage node collected by the scheduler in the storage system,the load weight of the current data storage node is calculated and distributed.The data load balancing of the massive storage system for wearable devices is realized.The experimental results show that the average time of load balancing using this method is 1.75h,which is much lower than the traditional methods.The results show the data load balancing technology of the massive storage system of wearable devices has the advantages of short data load balancing time,high load balancing,strong data processing capability,short processing time and obvious application.
文摘In this paper, a concept for the joint modeling of the device load and user intention is presented. It consists of two coupled models, a device load model to characterize the power consumption of an electric device of interest, and a user intention model for describing the user intentions which cause the energy consumption. The advantage of this joint model is the ability to predict the device load from the user intention and to reconstruct the user intention from the measured device load. This opens a new way for load monitoring, simulation and prediction from the perspective of users instead of devices.
基金Supported by Science and Technology Development Foundation of Shanghai Automotive Industry (1315A)
文摘A new experimental device has been developed for analyzing compression load deflection of the door seal by using stereovision theory. Precision instruments of optical grating and force sensor are also integrated in this device. Force-displacement response characteristics of compression at varied speed can be controlled. Solid foundations for characteristic and structure as well as optimization design of the car door seal are elucidated.
基金supported by the National Natural Science Foundation of China (No. 40971046,41023003,40901039)the Project from the State Key Laboratory of Frozen Soil Engineering of China (No. 09SF102003)
文摘A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load device, together with sensors and data loggers for detecting stress, deformation, and temperature changes. The system can accommodate soil blocks up to 3 m in length, 2.5 m in width, and 1 m in height. The lowest temperature provided by the refrigeration device is -20 ℃. The maximum load provided by the dynamic load device is 100 kN and the vibration fi'equency of the dynamic load can range from 0.1 to 10 Hz. A number of waveforms, such as sine waves, rectangular waves, triangle waves, and other user-defined waves can be generated by the dynamic load device controller.
文摘The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria.
基金National Natural Science Foundation of China under Grant No.51378497
文摘In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pressures by using split Hopkinson pressure bar equipment with a confi ning pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confi ning pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that:(1) The characteristics of two rocks in the ascent stage of the stressstrain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confi ning pressure increases.(2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confi ning pressure effects are obvious.(3) Due to the effect of confi ning pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice.
基金Public Benefit Research Foundation under Grant No.201108006Natural Science Foundation under Grant No.51161120360+2 种基金Heilongjiang Overseas Funding under Grant No.LC201002 of ChinaGrant-in-Aid for Scientific Research(Basic Research Category A,19206060)Japan Society for the Promotion of Science
文摘This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.
文摘A new multifunctional testing device for rock fragmentation was introduced, which can conduct many experiments such as single cutting under static load, crushing under impact load, thrusting under static load and cutting-impact test under the dynamic and static load. The results of granite and concrete抯 experiments with polycrystalline diamond compact (PDC) flat cutters and carbide alloy cutters under different loadings show that the device has good performance, and the characteristics of broken rock under the combined loads are similar to that under the single static pressure or impact crushing the rock, and the combined loads can increase the effect of rock fragmentation obviously. The experimental methods and effects have the important meaning for studying new drill-ing tool on hard rock fragmentation.
文摘Umbrella-type mud-water diversion labyrinth sedimentation device,which is characterized by the combination of two swash plate and wing plate into an umbrella type with a set angle,the angle range of the two swash plate is 15º--100º,the vertical height of the swash plate is 60-70 mm,the parallel axis of the wing plate is the vertical direction,the height is 10-20 mm.the whole adopts the modular combination mode,and can be freely combined and disassembled according to different pond design,swash plate The interval(sedimentation distance)can be freely adjusted,mud take the mud road and water take the water road,to avoid the mutual interference of the water and mud road,to achieve the stability of the water quality.The turbidity of the sedimentation pond is low,stable in 0.3-2.0 NTU.
文摘In Heterogeneous Networks (HetNets), Integrating Device-to-Device communication (D2D) techniques presents as a promising solution for improving system performance by offloading traffic from heavily loaded macro cell (MC) to small cells (SCs). For instance, D2D can be used to offload traffic from heavily-loaded cells to light-loaded small cells. However, offloading new users may result in an unfair load distribution among small cells and consequently may affect the quality of service of some users. To achieve better performance and reduce blocking probability load balancing among small cells should be considered when we offload traffic from macro to small cells. In this paper, we consider a centralized offloaded relay selection scheme, in which a cellular provider can decide whether users can assist each other to relay their traffic to small cells. We propose a joint user-relay selection with dynamic load balancing scheme based on D2D communications using the Kuhn-Munkres (K-M) method. The offloading process considers the load from MC to SCs and among SCs. Compared to previous works, our simulation results show that the proposed scheme increases the number of admitted users in the system, and achieves a higher load balancing fairness index among small cells. Also, our scheme achieves a higher rate fairness index among users by adjusting the signal to interference plus noise ratio (SINR) threshold.
基金the State Grid Liaoning Electric Power Supply Co.,Ltd.(Research on Scheduling Decision Technology Based on Interactive Reinforcement Learning for Adapting High Proportion of New Energy,No.2023YF-49).
文摘Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.
文摘Skin integrity breakdown and pressure ulcer formation on the heel are predictable and preventable healthcare occurrences. By minimizing surface contact pressures that can cause heel capillary occlusion, heel off-loading devices help mitigate the risk of decubitus ulceration. The purpose of this study is to investigate the efficacy of six off-loading methods commonly used in clinical settings to decrease heel contact pressure. Pressure mapping is used to evaluate contact pressure at the heel for underweight, normal weight, and overweight simulations. Based upon averages across four trials, it is shown that all devices reduce heel contact pressure when compared to no off-load- ing. The PRUventor™ boot exhibits significantly lower average pressure values than other off-load- ing strategies tested, suggesting that the PRUventor™ is the most effective off-loading device. From the analysis of the experimental data and comparison to similar data for respective off-loading alternatives, it is concluded that the PRUventor™ boot is an effective heel off-loading device for use in clinical settings.
文摘Hydrogen as a clean energy source is made full use, this paper researches the electrical model of PEMFC generator, analyzes the harmonic trend and its hazards when the generator operates with linear load and nonlinear load running synchronously, comparatively analyzes the commonly used harmonic suppression technology. Simulate and analyze the filter performance when APF is used. The results illustrate that as a filter device, APF can absorb the harmonic properly in PEMFC power system.
文摘One of the most important issues in storage and transport processes is the formation of unit loads. Our main goal is to investigate the homogenization of unit load formation cases. We provide a model involving the major factors and parameters for the optimal selection of the unit load formations. Objective functions and constraints related to the basic tasks are formulated. We give a method for the selection of the optimal unit load formation equipment for a given number of products under given constraints.
文摘Every day,more and more data is being produced by the Internet of Things(IoT)applications.IoT data differ in amount,diversity,veracity,and velocity.Because of latency,various types of data handling in cloud computing are not suitable for many time-sensitive applications.When users move from one site to another,mobility also adds to the latency.By placing computing close to IoT devices with mobility support,fog computing addresses these problems.An efficient Load Balancing Algorithm(LBA)improves user experience and Quality of Service(QoS).Classification of Request(CoR)based Resource Adaptive LBA is suggested in this research.This technique clusters fog nodes using an efficient K-means clustering algorithm and then uses a Decision Tree approach to categorize the request.The decision-making process for time-sensitive and delay-tolerable requests is facilitated by the classification of requests.LBA does the operation based on these classifications.The MobFogSim simulation program is utilized to assess how well the algorithm with mobility features performs.The outcome demonstrates that the LBA algorithm’s performance enhances the total system performance,which was attained by(90.8%).Using LBA,several metrics may be examined,including Response Time(RT),delay(d),Energy Consumption(EC),and latency.Through the on-demand provisioning of necessary resources to IoT users,our suggested LBA assures effective resource usage.