The boundary mesh of the casting model was determined by direct calculation on the triangular facets extracted from the STL file of the 3D model. Then the inner and outer grids of the model were identified by the algo...The boundary mesh of the casting model was determined by direct calculation on the triangular facets extracted from the STL file of the 3D model. Then the inner and outer grids of the model were identified by the algorithm in which we named Inner Seed Grid Method. Finally, a program to automatically generate a 3D FDM mesh was compiled. In the paper, a method named Triangle Contraction Search Method (TCSM) was put forward to ensure not losing the boundary grids; while an algorithm to search inner seed grids to identify inner/outer grids of the casting model was also brought forward. Our algorithm was simple, clear and easy to construct program. Three examples for the casting mesh generation testified the validity of the program.展开更多
In order to provide a guidance to specify the element size dynamically during adaptive finite element mesh generation, adaptive criteria are firstly defined according to the relationships between the geometrical featu...In order to provide a guidance to specify the element size dynamically during adaptive finite element mesh generation, adaptive criteria are firstly defined according to the relationships between the geometrical features and the elements of 3D solid. Various modes based on different datum geometrical elements, such as vertex, curve, surface, and so on, are then designed for generating local refined mesh. With the guidance of the defmed criteria, different modes are automatically selected to apply on the appropriate datum objects to program the element size in the local special areas. As a result, the control information of element size is successfully programmed covering the entire domain based on the geometrical features of 3D solid. A new algorithm based on Delatmay triangulation is then developed for generating 3D adaptive finite element mesh, in which the element size is dynamically specified to catch the geometrical features and suitable tetrahedron facets are selected to locate interior nodes continuously. As a result, adaptive mesh with good-quality elements is generated. Examples show that the proposed method can be successfully applied to adaptive finite element mesh automatic generation based on the geometrical features of 3D solid.展开更多
How to automatically generate three-dimensional finite element Delaunay mesh by a peifected node connection method is introduced, where nodes are generated based on existing elements, instead of independence of node c...How to automatically generate three-dimensional finite element Delaunay mesh by a peifected node connection method is introduced, where nodes are generated based on existing elements, instead of independence of node creation and elements generation in traditional node connection method. Therefore, Ihe the difficulty about how to automatically create nodes in the traditional method is overcome.展开更多
This paper describes two modified methods for triangular and quadrilateral meshing for finite element analysis of 2D electric machines. One is coupling the classic Delaunay method and advancing front method to generat...This paper describes two modified methods for triangular and quadrilateral meshing for finite element analysis of 2D electric machines. One is coupling the classic Delaunay method and advancing front method to generate optimal triangulation; the other is coupling the classic paving and Delaunay triangulation for optimal quadrilateral meshing. Various electric machine models are meshed successfully to demonstrate the robustness and effectiveness of the methods.展开更多
We investigate different techniques for fitting Bézier curves to surfaces in context of high-order curvilinear mesh generation. Starting from distance-based least-squares fitting we develop an incremental algorit...We investigate different techniques for fitting Bézier curves to surfaces in context of high-order curvilinear mesh generation. Starting from distance-based least-squares fitting we develop an incremental algorithm, which incorporates approximations of stretch and bending energy. In the process, the algorithm reduces the energy weight in favor of accuracy, leading to an optimized set of sampling points. This energy-minimizing fitting strategy is applied to analytically defined as well as triangulated surfaces. The results confirm that the proposed method straightens and shortens the curves efficiently. Moreover the method preserves the accuracy and convergence behavior of distance-based fitting. Preliminary application to surface mesh generation shows a remarkable improvement of patch quality in high curvature regions.展开更多
An efficient Advancing Layer Method(ALM)is presented to create semi-structured prisms on viscous walls,in which a procedure that checks possible front intersections is essential to its efficiency.This paper develops v...An efficient Advancing Layer Method(ALM)is presented to create semi-structured prisms on viscous walls,in which a procedure that checks possible front intersections is essential to its efficiency.This paper develops various novel schemes to improve the algorithm’s efficiency precisely while not sacrificing its robustness and the resulting mesh quality.First,it employs a set of new techniques,and data structures are developed to improve the efficiency of the frontcheck procedure.Then,within each octant,a new filter is developed to reduce the intersection computations in the searching process.In addition,data structures are well designed to store the contiguously accessed data in each computing-intensive loop in a contiguous space for a potentially better cache hit ratio.We built a geometry model library formed by examples of industrial complexity to demonstrate the practicability of the algorithm.All the efforts mentioned above enable us to reduce the percentage of computing time taken by intersection check to an acceptable level(approximately 26%),which make it no longer be the most time-consuming part.展开更多
We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. ...We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. The present paper has six sections. A review of previous work on interactions between waves and ocean structures is presented in Section one. Section two gives the mathematical formulation. In Section three, the finite element discretization, mesh generation and the finite element linear system solution methods are described. Section four presents numerical methods including time marching schemes, computation of velocity, remeshing and smoothing techniques and numerical radiation conditions. The application of the FEM to the wave-structure interactions are presented in Section five followed by the concluding remarks in Section six.展开更多
The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is pr...The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is prone to body freedomflutter(BFF),which is a result of coupling of the rigid body short-periodmodewith 1st wing bendingmode.Accurate prediction of the BFF characteristics is helpful to reflect the attitude changes of the vehicle intuitively and design the active flutter suppression control law.Instead of using the rigid body mode,this work simulates the rigid bodymotion of the model by using the six-degree-of-freedom(6DOF)equation.A dynamicmesh generation strategy particularly suitable for BFF simulation of free flying aircraft is developed.An accurate Computational Fluid Dynamics/Computational Structural Dynamics/six-degree-of-freedom equation(CFD/CSD/6DOF)-based BFF prediction method is proposed.Firstly,the time-domain CFD/CSD method is used to calculate the static equilibrium state of the model.Based on this state,the CFD/CSD/6DOF equation is solved in time domain to evaluate the structural response of themodel.Then combinedwith the variable stiffnessmethod,the critical flutter point of the model is obtained.This method is applied to the BFF calculation of a flyingwing model.The calculation results of the BFF characteristics of the model agree well with those fromthe modalmethod andNastran software.Finally,the method is used to analyze the influence factors of BFF.The analysis results show that the flutter speed can be improved by either releasing plunge constraint or moving the center ofmass forward or increasing the pitch inertia.展开更多
This present paper proposes aerodynamic forces and entropy generation characteristics on theflow past two-dimensional airfoil at low Reynolds number by multiple-relaxation-time lattice Boltzmann method to clarify theflo...This present paper proposes aerodynamic forces and entropy generation characteristics on theflow past two-dimensional airfoil at low Reynolds number by multiple-relaxation-time lattice Boltzmann method to clarify theflow loss mechanism.The block mesh refinement was adopted in which a higher accuracy was needed in parts of the domain characterized by complexflow.The interpolated bounce-back method was used to treat the irregular curve.This numerical method can effectively solve the complexflowfield simulation problems with reasonable accuracy and reli-ability by simulatingflow around plate and airfoil.Based on second law of thermo-dynamics,an expression of entropy generation rate for arbitrary control volume was derived theoretically which could accurately quantify the local irreversible loss of theflowfield at any position.After that,a comprehensive numerical study was conducted to analyze relationship of entropy generation and drag force by taking NACA0012 air-foil as the research object.For unsteady condition,entropy generation rate and the drag force are not linearly related any more.Losses due to steady effects mainly con-sider the irreversibility in the boundary layer and wake while the unsteady effects come from the interaction between the main separation vortex and the trailing shed-ding vortex.展开更多
A hybrid grid generation technique and a multigrid/parallel algorithm are presented in this paper for turbulence flow simulations over three-dimensional (3D) complex geometries. The hybrid grid generation technique ...A hybrid grid generation technique and a multigrid/parallel algorithm are presented in this paper for turbulence flow simulations over three-dimensional (3D) complex geometries. The hybrid grid generation technique is based on an agglomeration method of anisotropic tetrahedrons. Firstly, the complex computational domain is covered by pure tetrahedral grids, in which anisotropic tetrahedrons are adopted to discrete the boundary layer and isotropic tetrahedrons in the outer field. Then, the anisotropic tetrahedrons in the boundary layer are agglomerated to generate prismatic grids. The agglomeration method can improve the grid quality in boundary layer and reduce the grid quantity to enhance the numerical accuracy and efficiency. In order to accelerate the convergence history, a multigrid/parallel algorithm is developed also based on anisotropic agglomeration approach. The numerical results demonstrate the excellent accelerating capability of this multigrid method.展开更多
This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method...This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.展开更多
Aiming to solve mesh generation,computational stability,accuracy control,and other problems encountered with existing numerical methods,such as the finite element method and the finite volume method,a new numerical co...Aiming to solve mesh generation,computational stability,accuracy control,and other problems encountered with existing numerical methods,such as the finite element method and the finite volume method,a new numerical computational method for continuum mechanics,namely the manifold method based on independent covers(MMIC),is proposed based on the concept of mathematical manifolds,to form partitioned series solutions of partial differential equations.As partitions,the cover meshes have the characteristics of arbitrary shape,arbitrary connection,and arbitrary refinement.They are expected to fundamentally solve the mesh generation problem and can also simulate the precise geometric boundaries of the CAD model and strictly impose boundary conditions.In the selection of series solutions,local analytical solutions(such as series solutions at crack tips and series solutions in infinite domains)or proper forms of complete series can be used to reflect the local or global characteristics of the physical field to accelerate convergence.Various applications are presented.A new method of beam,plate,and shell analysis is proposed.The deformation characteristics of beams,plates,and shells are simulated with polynomial series of suitable forms,and the analysis of curved beams and shells with accurate geometric representation is realized.For the static elastic analysis of two-dimensional structures,a mesh splitting algorithm is proposed,and h-p version adaptive analysis is carried out with error estimation.Thus,automatic computation integrated with CAD is attempted.Adaptive analysis is also attempted for the solution of differential equations of fluids.For the one-dimensional convection-diffusion equation and Burgers equation,calculation results with high precision are obtained in strong convection and shock wave simulations,avoiding nonphysical oscillations.And solving the two-dimensional incompressible Navier-Stokes equation is also attempted.The series solution formula is used to obtain the physical quantity of interest of the material at a space point to eliminate the convection terms.Thus,geometrically nonlinear problems can be analyzed in fixed meshes,and a new method of free surface tracking is proposed.展开更多
Efficiency and accuracy are two major concerns in numerical solutions of the Poisson-Boltzmann equation for applications in chemistry and biophysics.Recent developments in boundary element methods,interface methods,ad...Efficiency and accuracy are two major concerns in numerical solutions of the Poisson-Boltzmann equation for applications in chemistry and biophysics.Recent developments in boundary element methods,interface methods,adaptive methods,finite element methods,and other approaches for the Poisson-Boltzmann equation as well as related mesh generation techniques are reviewed.We also discussed the challenging problems and possible future work,in particular,for the aim of biophysical applications.展开更多
The bubble packing method can generate high-quality node sets in simple and complex domains.However,its efficiency remains to be improved.This study is a part of an ongoing effort to introduce several acceleration sch...The bubble packing method can generate high-quality node sets in simple and complex domains.However,its efficiency remains to be improved.This study is a part of an ongoing effort to introduce several acceleration schemes to reduce the cost of simulation.Firstly,allow the viscosity coefficient c in the bubble governing equations to change according the coordinate of the bubble which are defined separately as odd and normal bubbles,and meanwhile with the saw-shape relationship with time or iterations.Then,in order to relieve the over crowded initial bubble placement,two coefficients w1 and w2 are introduced to modify the insertion criterion.The range of those two coefficients are discussed to be w1=1,w2∈[0.5,0.8].Finally,a self-adaptive termination condition is logically set when the stable system equilibrium is achieved.Numerical examples illustrate that the computing cost can significantly decrease by roughly 80%via adopting various combination of proper schemes(except the uniform placement example),and the average qualities of corresponding Delaunay triangulation substantially exceed 0.9.It shows that those strategies are efficient and can generate a node set with high quality.展开更多
In the present paper, compactions of time-dependent viscous granular materials are simulated step by step using the automatic adaptive mesh generation schemes. Inertial forces of the viscous incompressible aggregates ...In the present paper, compactions of time-dependent viscous granular materials are simulated step by step using the automatic adaptive mesh generation schemes. Inertial forces of the viscous incompressible aggregates axe taken into account. The corresponding conservation equations, the weighted-integral formulations, and penalty finite element model are investigated. The fully discrete finite element equations for the simulation are derived. Polygonal particles of aggregates are simplified as mixed three-node and four-node elements. The automatic adaptive mesh generation schemes include contact detection algorithms, and mesh upgrade schemes. Solu- tions of the numerical simulation axe in good agreement with some results from literatures. With minor modification, the proposed numerical model can be applied in several industries, including the pharmaceutical, ceramic, food, and household product manufacturing.展开更多
We consider the design of an effective and reliable adaptive finite element method(AFEM)for the nonlinear Poisson-Boltzmann equation(PBE).We first examine the two-term regularization technique for the continuous probl...We consider the design of an effective and reliable adaptive finite element method(AFEM)for the nonlinear Poisson-Boltzmann equation(PBE).We first examine the two-term regularization technique for the continuous problem recently proposed by Chen,Holst and Xu based on the removal of the singular electrostatic potential inside biomolecules;this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation,the first provably convergent discretization and also allowed for the development of a provably convergent AFEM.However,in practical implementation,this two-term regularization exhibits numerical instability.Therefore,we examine a variation of this regularization technique which can be shown to be less susceptible to such instability.We establish a priori estimates and other basic results for the continuous regularized problem,as well as for Galerkin finite element approximations.We show that the new approach produces regularized continuous and discrete problemswith the samemathematical advantages of the original regularization.We then design an AFEM scheme for the new regularized problem and show that the resulting AFEM scheme is accurate and reliable,by proving a contraction result for the error.This result,which is one of the first results of this type for nonlinear elliptic problems,is based on using continuous and discrete a priori L¥estimates.To provide a high-quality geometric model as input to the AFEM algorithm,we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures,based on the intrinsic local structure tensor of the molecular surface.All of the algorithms described in the article are implemented in the Finite Element Toolkit(FETK),developed and maintained at UCSD.The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem.The convergence and accuracy of the overall AFEMalgorithmis also illustrated by numerical approximation of electrostatic solvation energy for an insulin protein.展开更多
Mesh-based image warping techniques typically represent image deformation using linear functions on triangular meshes or bilinear functions on rectangular meshes.This enables simple and efficient implementation,but in...Mesh-based image warping techniques typically represent image deformation using linear functions on triangular meshes or bilinear functions on rectangular meshes.This enables simple and efficient implementation,but in turn,restricts the representation capability of the deformation,often leading to unsatisfactory warping results.We present a novel,flexible polygonal finite element(poly-FEM)method for content-aware image warping.Image deformation is represented by high-order poly-FEMs on a content-aware polygonal mesh with a cell distribution adapted to saliency information in the source image.This allows highly adaptive meshes and smoother warping with fewer degrees of freedom,thus significantly extending the flexibility and capability of the warping representation.Benefiting from the continuous formulation of image deformation,our polyFEM warping method is able to compute the optimal image deformation by minimizing existing or even newly designed warping energies consisting of penalty terms for specific transformations.We demonstrate the versatility of the proposed poly-FEM warping method in representing different deformations and its superiority by comparing it to other existing state-ofthe-art methods.展开更多
Electrostatics interactions play a major role in the stabilization of biomolecules:as such,they remain a major focus of theoretical and computational studies in biophysics.Electrostatics in solution is strongly depend...Electrostatics interactions play a major role in the stabilization of biomolecules:as such,they remain a major focus of theoretical and computational studies in biophysics.Electrostatics in solution is strongly dependent on the nature of the solvent and on the ions it contains.While methods that treat the solvent and ions explicitly provide an accurate estimate of these interactions,they are usually computationally too demanding to study large macromolecular systems.Implicit solvent methods provide a viable alternative,especially those based on Poisson theory.The Poisson-Boltzmann equation(PBE)treats the system in a mean field approximation,providing reasonable estimates of electrostatics interactions in a solvent treated as continuum.In the first part of this paper,we review the theory behind the PBE,including recent improvement in which ions size and dipolar features of solvent molecules are taken into account explicitly.The PBE is a non linear second order differential equation with discontinuous coefficients,for which no analytical solution is available for large molecular systems.Many numerical solvers have been developed that solve a discretized version of the PBE on a mesh,either using finite difference,finite element,or boundary element methods.The accuracy of the solutions provided by these solvers highly depend on the geometry of their underlying meshes,as well as on the method used to embed the physical system on the mesh.In the second part of the paper,we describe a new geometric approach for generating unstructured tetrahedral meshes as well as simplifications of these meshes that are well fitted for solving the PBE equation using multigrid approaches.展开更多
This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann(AFMPB)solver.We introduce and discuss the following components in order:the Poi...This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann(AFMPB)solver.We introduce and discuss the following components in order:the Poisson-Boltzmann model,boundary integral equation reformulation,surface mesh generation,the nodepatch discretization approach,Krylov iterative methods,the new version of fast multipole methods(FMMs),and a dynamic prioritization technique for scheduling parallel operations.For each component,we also remark on feasible approaches for further improvements in efficiency,accuracy and applicability of the AFMPB solver to largescale long-time molecular dynamics simulations.The potential of the solver is demonstrated with preliminary numerical results.展开更多
基金supported by the fund of the State Key Laboratory of Solidification Processing in NWPU (No: SKLSP201006)the National Basic Research Program of China (No: 2011CB610402)
文摘The boundary mesh of the casting model was determined by direct calculation on the triangular facets extracted from the STL file of the 3D model. Then the inner and outer grids of the model were identified by the algorithm in which we named Inner Seed Grid Method. Finally, a program to automatically generate a 3D FDM mesh was compiled. In the paper, a method named Triangle Contraction Search Method (TCSM) was put forward to ensure not losing the boundary grids; while an algorithm to search inner seed grids to identify inner/outer grids of the casting model was also brought forward. Our algorithm was simple, clear and easy to construct program. Three examples for the casting mesh generation testified the validity of the program.
基金This project is supported by Provincial Project Foundation of Science and Technology of Guangdong, China(No.2002104040101).
文摘In order to provide a guidance to specify the element size dynamically during adaptive finite element mesh generation, adaptive criteria are firstly defined according to the relationships between the geometrical features and the elements of 3D solid. Various modes based on different datum geometrical elements, such as vertex, curve, surface, and so on, are then designed for generating local refined mesh. With the guidance of the defmed criteria, different modes are automatically selected to apply on the appropriate datum objects to program the element size in the local special areas. As a result, the control information of element size is successfully programmed covering the entire domain based on the geometrical features of 3D solid. A new algorithm based on Delatmay triangulation is then developed for generating 3D adaptive finite element mesh, in which the element size is dynamically specified to catch the geometrical features and suitable tetrahedron facets are selected to locate interior nodes continuously. As a result, adaptive mesh with good-quality elements is generated. Examples show that the proposed method can be successfully applied to adaptive finite element mesh automatic generation based on the geometrical features of 3D solid.
基金This project is supported by Provincial Natural Science foundation of Guangdong!(970516)
文摘How to automatically generate three-dimensional finite element Delaunay mesh by a peifected node connection method is introduced, where nodes are generated based on existing elements, instead of independence of node creation and elements generation in traditional node connection method. Therefore, Ihe the difficulty about how to automatically create nodes in the traditional method is overcome.
文摘This paper describes two modified methods for triangular and quadrilateral meshing for finite element analysis of 2D electric machines. One is coupling the classic Delaunay method and advancing front method to generate optimal triangulation; the other is coupling the classic paving and Delaunay triangulation for optimal quadrilateral meshing. Various electric machine models are meshed successfully to demonstrate the robustness and effectiveness of the methods.
基金the funding of this project by the German Research Foundation(DFG,STI 157/4-1).
文摘We investigate different techniques for fitting Bézier curves to surfaces in context of high-order curvilinear mesh generation. Starting from distance-based least-squares fitting we develop an incremental algorithm, which incorporates approximations of stretch and bending energy. In the process, the algorithm reduces the energy weight in favor of accuracy, leading to an optimized set of sampling points. This energy-minimizing fitting strategy is applied to analytically defined as well as triangulated surfaces. The results confirm that the proposed method straightens and shortens the curves efficiently. Moreover the method preserves the accuracy and convergence behavior of distance-based fitting. Preliminary application to surface mesh generation shows a remarkable improvement of patch quality in high curvature regions.
基金co-supported by the Zhejiang Provincial Science and Technology Program,China(No.2021C01108)the Innovative Research Foundation of Ship General Performance,China(No.14022105)the Science and Technology on Scramjet Laboratory Fund,China(No.2022-JCJQ-LB020-05).
文摘An efficient Advancing Layer Method(ALM)is presented to create semi-structured prisms on viscous walls,in which a procedure that checks possible front intersections is essential to its efficiency.This paper develops various novel schemes to improve the algorithm’s efficiency precisely while not sacrificing its robustness and the resulting mesh quality.First,it employs a set of new techniques,and data structures are developed to improve the efficiency of the frontcheck procedure.Then,within each octant,a new filter is developed to reduce the intersection computations in the searching process.In addition,data structures are well designed to store the contiguously accessed data in each computing-intensive loop in a contiguous space for a potentially better cache hit ratio.We built a geometry model library formed by examples of industrial complexity to demonstrate the practicability of the algorithm.All the efforts mentioned above enable us to reduce the percentage of computing time taken by intersection check to an acceptable level(approximately 26%),which make it no longer be the most time-consuming part.
文摘We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. The present paper has six sections. A review of previous work on interactions between waves and ocean structures is presented in Section one. Section two gives the mathematical formulation. In Section three, the finite element discretization, mesh generation and the finite element linear system solution methods are described. Section four presents numerical methods including time marching schemes, computation of velocity, remeshing and smoothing techniques and numerical radiation conditions. The application of the FEM to the wave-structure interactions are presented in Section five followed by the concluding remarks in Section six.
基金This work was supported by the National Natural Science Foundation of China(No.11872212)and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is prone to body freedomflutter(BFF),which is a result of coupling of the rigid body short-periodmodewith 1st wing bendingmode.Accurate prediction of the BFF characteristics is helpful to reflect the attitude changes of the vehicle intuitively and design the active flutter suppression control law.Instead of using the rigid body mode,this work simulates the rigid bodymotion of the model by using the six-degree-of-freedom(6DOF)equation.A dynamicmesh generation strategy particularly suitable for BFF simulation of free flying aircraft is developed.An accurate Computational Fluid Dynamics/Computational Structural Dynamics/six-degree-of-freedom equation(CFD/CSD/6DOF)-based BFF prediction method is proposed.Firstly,the time-domain CFD/CSD method is used to calculate the static equilibrium state of the model.Based on this state,the CFD/CSD/6DOF equation is solved in time domain to evaluate the structural response of themodel.Then combinedwith the variable stiffnessmethod,the critical flutter point of the model is obtained.This method is applied to the BFF calculation of a flyingwing model.The calculation results of the BFF characteristics of the model agree well with those fromthe modalmethod andNastran software.Finally,the method is used to analyze the influence factors of BFF.The analysis results show that the flutter speed can be improved by either releasing plunge constraint or moving the center ofmass forward or increasing the pitch inertia.
基金The authors gratefully acknowledge the support by the National Key R&D Program of China(No.2018YFB0606101)Thanks to SCTS/CGCL HPCC of HUST for providing computing resources and technical support.
文摘This present paper proposes aerodynamic forces and entropy generation characteristics on theflow past two-dimensional airfoil at low Reynolds number by multiple-relaxation-time lattice Boltzmann method to clarify theflow loss mechanism.The block mesh refinement was adopted in which a higher accuracy was needed in parts of the domain characterized by complexflow.The interpolated bounce-back method was used to treat the irregular curve.This numerical method can effectively solve the complexflowfield simulation problems with reasonable accuracy and reli-ability by simulatingflow around plate and airfoil.Based on second law of thermo-dynamics,an expression of entropy generation rate for arbitrary control volume was derived theoretically which could accurately quantify the local irreversible loss of theflowfield at any position.After that,a comprehensive numerical study was conducted to analyze relationship of entropy generation and drag force by taking NACA0012 air-foil as the research object.For unsteady condition,entropy generation rate and the drag force are not linearly related any more.Losses due to steady effects mainly con-sider the irreversibility in the boundary layer and wake while the unsteady effects come from the interaction between the main separation vortex and the trailing shed-ding vortex.
基金supported partially by National Basic Research Program of China (Grant No. 2009CB723800)National Natural Science Foundation of China (Grant Nos: 91016001 and 10872023)
文摘A hybrid grid generation technique and a multigrid/parallel algorithm are presented in this paper for turbulence flow simulations over three-dimensional (3D) complex geometries. The hybrid grid generation technique is based on an agglomeration method of anisotropic tetrahedrons. Firstly, the complex computational domain is covered by pure tetrahedral grids, in which anisotropic tetrahedrons are adopted to discrete the boundary layer and isotropic tetrahedrons in the outer field. Then, the anisotropic tetrahedrons in the boundary layer are agglomerated to generate prismatic grids. The agglomeration method can improve the grid quality in boundary layer and reduce the grid quantity to enhance the numerical accuracy and efficiency. In order to accelerate the convergence history, a multigrid/parallel algorithm is developed also based on anisotropic agglomeration approach. The numerical results demonstrate the excellent accelerating capability of this multigrid method.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 11302057, 11302056), the Fundamental Research Funds for the Central Universities (Grant No. HEUCF140115) and the Research Funds for State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University (Grant No. 1310).
文摘This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institutes in China(Grant Nos.CKSF2010012/CL,CKSF2013031/CL,CKSF2014054/CL,CKSF2015033/CL,and CKSF2016022/CL)。
文摘Aiming to solve mesh generation,computational stability,accuracy control,and other problems encountered with existing numerical methods,such as the finite element method and the finite volume method,a new numerical computational method for continuum mechanics,namely the manifold method based on independent covers(MMIC),is proposed based on the concept of mathematical manifolds,to form partitioned series solutions of partial differential equations.As partitions,the cover meshes have the characteristics of arbitrary shape,arbitrary connection,and arbitrary refinement.They are expected to fundamentally solve the mesh generation problem and can also simulate the precise geometric boundaries of the CAD model and strictly impose boundary conditions.In the selection of series solutions,local analytical solutions(such as series solutions at crack tips and series solutions in infinite domains)or proper forms of complete series can be used to reflect the local or global characteristics of the physical field to accelerate convergence.Various applications are presented.A new method of beam,plate,and shell analysis is proposed.The deformation characteristics of beams,plates,and shells are simulated with polynomial series of suitable forms,and the analysis of curved beams and shells with accurate geometric representation is realized.For the static elastic analysis of two-dimensional structures,a mesh splitting algorithm is proposed,and h-p version adaptive analysis is carried out with error estimation.Thus,automatic computation integrated with CAD is attempted.Adaptive analysis is also attempted for the solution of differential equations of fluids.For the one-dimensional convection-diffusion equation and Burgers equation,calculation results with high precision are obtained in strong convection and shock wave simulations,avoiding nonphysical oscillations.And solving the two-dimensional incompressible Navier-Stokes equation is also attempted.The series solution formula is used to obtain the physical quantity of interest of the material at a space point to eliminate the convection terms.Thus,geometrically nonlinear problems can be analyzed in fixed meshes,and a new method of free surface tracking is proposed.
基金the NIH,NSF,the Howard Hughes Medical Institute,National Biomedical Computing Resource,the NSF Center for Theoretical Biological Physics,SDSC,the W.M.Keck Foundation,and Accelrys,Inc.Michael Holst was supported in part by NSF Awards 0411723,0511766,and 0225630,and DOE Awards DEFG02-05ER25707 and DE-FG02-04ER25620.
文摘Efficiency and accuracy are two major concerns in numerical solutions of the Poisson-Boltzmann equation for applications in chemistry and biophysics.Recent developments in boundary element methods,interface methods,adaptive methods,finite element methods,and other approaches for the Poisson-Boltzmann equation as well as related mesh generation techniques are reviewed.We also discussed the challenging problems and possible future work,in particular,for the aim of biophysical applications.
基金National Natural Science Foundation of China(No.11071196,90916027).
文摘The bubble packing method can generate high-quality node sets in simple and complex domains.However,its efficiency remains to be improved.This study is a part of an ongoing effort to introduce several acceleration schemes to reduce the cost of simulation.Firstly,allow the viscosity coefficient c in the bubble governing equations to change according the coordinate of the bubble which are defined separately as odd and normal bubbles,and meanwhile with the saw-shape relationship with time or iterations.Then,in order to relieve the over crowded initial bubble placement,two coefficients w1 and w2 are introduced to modify the insertion criterion.The range of those two coefficients are discussed to be w1=1,w2∈[0.5,0.8].Finally,a self-adaptive termination condition is logically set when the stable system equilibrium is achieved.Numerical examples illustrate that the computing cost can significantly decrease by roughly 80%via adopting various combination of proper schemes(except the uniform placement example),and the average qualities of corresponding Delaunay triangulation substantially exceed 0.9.It shows that those strategies are efficient and can generate a node set with high quality.
基金supported by the National Natural Science Foundation of China (No. 10972162)
文摘In the present paper, compactions of time-dependent viscous granular materials are simulated step by step using the automatic adaptive mesh generation schemes. Inertial forces of the viscous incompressible aggregates axe taken into account. The corresponding conservation equations, the weighted-integral formulations, and penalty finite element model are investigated. The fully discrete finite element equations for the simulation are derived. Polygonal particles of aggregates are simplified as mixed three-node and four-node elements. The automatic adaptive mesh generation schemes include contact detection algorithms, and mesh upgrade schemes. Solu- tions of the numerical simulation axe in good agreement with some results from literatures. With minor modification, the proposed numerical model can be applied in several industries, including the pharmaceutical, ceramic, food, and household product manufacturing.
基金supported in part by NSF Awards 0715146,0821816,0915220 and 0822283(CTBP)NIHAward P41RR08605-16(NBCR),DOD/DTRA Award HDTRA-09-1-0036+1 种基金CTBP,NBCR,NSF and NIHsupported in part by NIH,NSF,HHMI,CTBP and NBCR.The third,fourth and fifth authors were supported in part by NSF Award 0715146,CTBP,NBCR and HHMI.
文摘We consider the design of an effective and reliable adaptive finite element method(AFEM)for the nonlinear Poisson-Boltzmann equation(PBE).We first examine the two-term regularization technique for the continuous problem recently proposed by Chen,Holst and Xu based on the removal of the singular electrostatic potential inside biomolecules;this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation,the first provably convergent discretization and also allowed for the development of a provably convergent AFEM.However,in practical implementation,this two-term regularization exhibits numerical instability.Therefore,we examine a variation of this regularization technique which can be shown to be less susceptible to such instability.We establish a priori estimates and other basic results for the continuous regularized problem,as well as for Galerkin finite element approximations.We show that the new approach produces regularized continuous and discrete problemswith the samemathematical advantages of the original regularization.We then design an AFEM scheme for the new regularized problem and show that the resulting AFEM scheme is accurate and reliable,by proving a contraction result for the error.This result,which is one of the first results of this type for nonlinear elliptic problems,is based on using continuous and discrete a priori L¥estimates.To provide a high-quality geometric model as input to the AFEM algorithm,we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures,based on the intrinsic local structure tensor of the molecular surface.All of the algorithms described in the article are implemented in the Finite Element Toolkit(FETK),developed and maintained at UCSD.The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem.The convergence and accuracy of the overall AFEMalgorithmis also illustrated by numerical approximation of electrostatic solvation energy for an insulin protein.
基金The research of Juan Cao was supported by the National Natural Science Foundation of China(Nos.61872308,61972327,and 62272402)the Xiamen Youth Innovation Funds(No.3502Z20206029)Yongjie Jessica Zhang was supported in part by NSF CMMI-1953323 and a Honda grant.
文摘Mesh-based image warping techniques typically represent image deformation using linear functions on triangular meshes or bilinear functions on rectangular meshes.This enables simple and efficient implementation,but in turn,restricts the representation capability of the deformation,often leading to unsatisfactory warping results.We present a novel,flexible polygonal finite element(poly-FEM)method for content-aware image warping.Image deformation is represented by high-order poly-FEMs on a content-aware polygonal mesh with a cell distribution adapted to saliency information in the source image.This allows highly adaptive meshes and smoother warping with fewer degrees of freedom,thus significantly extending the flexibility and capability of the warping representation.Benefiting from the continuous formulation of image deformation,our polyFEM warping method is able to compute the optimal image deformation by minimizing existing or even newly designed warping energies consisting of penalty terms for specific transformations.We demonstrate the versatility of the proposed poly-FEM warping method in representing different deformations and its superiority by comparing it to other existing state-ofthe-art methods.
基金the National Institute of Health under contract GM080399.
文摘Electrostatics interactions play a major role in the stabilization of biomolecules:as such,they remain a major focus of theoretical and computational studies in biophysics.Electrostatics in solution is strongly dependent on the nature of the solvent and on the ions it contains.While methods that treat the solvent and ions explicitly provide an accurate estimate of these interactions,they are usually computationally too demanding to study large macromolecular systems.Implicit solvent methods provide a viable alternative,especially those based on Poisson theory.The Poisson-Boltzmann equation(PBE)treats the system in a mean field approximation,providing reasonable estimates of electrostatics interactions in a solvent treated as continuum.In the first part of this paper,we review the theory behind the PBE,including recent improvement in which ions size and dipolar features of solvent molecules are taken into account explicitly.The PBE is a non linear second order differential equation with discontinuous coefficients,for which no analytical solution is available for large molecular systems.Many numerical solvers have been developed that solve a discretized version of the PBE on a mesh,either using finite difference,finite element,or boundary element methods.The accuracy of the solutions provided by these solvers highly depend on the geometry of their underlying meshes,as well as on the method used to embed the physical system on the mesh.In the second part of the paper,we describe a new geometric approach for generating unstructured tetrahedral meshes as well as simplifications of these meshes that are well fitted for solving the PBE equation using multigrid approaches.
基金supported by NSF,DOE,HHMI,and NIH(B.Z./X.S./N.P.:NSF 0905164,B.Z./J.H.:NSF 0811130 and NSF 0905473,J.A.M.:NSF MCB1020765 and NIH GM31749)the NSF Center of Theoretical Biological Physics(CTBP)partially funded by the Chinese Academy of Sciences,the State Key Laboratory of Scientific/Engineering Computing,and the China NSF(NSFC1097218).
文摘This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann(AFMPB)solver.We introduce and discuss the following components in order:the Poisson-Boltzmann model,boundary integral equation reformulation,surface mesh generation,the nodepatch discretization approach,Krylov iterative methods,the new version of fast multipole methods(FMMs),and a dynamic prioritization technique for scheduling parallel operations.For each component,we also remark on feasible approaches for further improvements in efficiency,accuracy and applicability of the AFMPB solver to largescale long-time molecular dynamics simulations.The potential of the solver is demonstrated with preliminary numerical results.