The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is...The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is discrete and constant,which cannot affect the situation of the solution space and limit the diversity of bacterial population. In this paper, an improved QBFO(IQBFO) algorithm is proposed, which can adaptively make the quantum rotation angle continuously updated and enhance the global search ability. In the initialization process, the modified probability of the optimal rotation angle is introduced to avoid the existence of invariant solutions. The modified operator of probability amplitude is adopted to further increase the population diversity.The tests based on benchmark functions verify the effectiveness of the proposed algorithm. Moreover, compared with the integerorder PID controller, the fractional-order proportion integration differentiation(PID) controller increases the complexity of the system with better flexibility and robustness. Thus the fractional-order PID controller is applied to the servo system. The tuning results of PID parameters of the fractional-order servo system show that the proposed algorithm has a good performance in tuning the PID parameters of the fractional-order servo system.展开更多
The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the prop...The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.展开更多
Fused deposition modelling (FDM) is a fast growing rapid prototyping (RP) technology due to its ability to build functional parts having complex geometrical shapes in reasonable build time. The dimensional accuracy, s...Fused deposition modelling (FDM) is a fast growing rapid prototyping (RP) technology due to its ability to build functional parts having complex geometrical shapes in reasonable build time. The dimensional accuracy, surface roughness, mechanical strength and above all functionality of built parts are dependent on many process variables and their settings. In this study, five important process parameters such as layer thickness, orientation, raster angle, raster width and air gap have been considered to study their effects on three responses viz., tensile, flexural and impact strength of test specimen. Experiments have been conducted using central composite design (CCD) and empirical models relating each response and process parameters have been developed. The models are validated using analysis of variance (ANOVA). Finally, bacterial foraging technique is used to suggest theoretical combination of parameter settings to achieve good strength simultaneously for all responses.展开更多
Transformers are one of the main components of any power system. An accurate estimation of system be-haviour, including load flow studies, protection, and safe control of the system calls for an accurate equiva-lent c...Transformers are one of the main components of any power system. An accurate estimation of system be-haviour, including load flow studies, protection, and safe control of the system calls for an accurate equiva-lent circuit parameters of all system components such as generators, transformers, etc. This paper presents a methodology to estimate the equivalent circuit parameters of the Three Winding Transformer (TWT) using Bacterial Foraging Algorithm (BFA). The estimation procedure based on load test data at one particular op-erating point namely supply voltage, load currents, input power. The performance characteristics, such as efficiency and voltage regulation are considered along with the name plate data in order to minimize the er-ror between the estimated and measured data. The estimation procedure is demonstrated with a sample three winding transformer and the results are compared against the directly measured performance of TWT and genetic algorithm optimization results. The simulation results show the ability of the proposed technique to capture the true values of the machine parameters and the superiority of the results obtained using the bacte-rial foraging algorithm.展开更多
Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),whi...Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),which simulates the foraging behavior of “E.coli” bacterium,to tune the Gaussian membership functions parameters of an improved Takagi-Sugeno-Kang fuzzy system(C-ITSKFS) rule base.To remove the defect of the low rate of convergence and prematurity,three modifications were produced to the standard bacterial foraging optimization(BFO).As for the low accuracy of finding out all optimal solutions with multi-method functions,the IBFO was performed.In order to demonstrate the performance of the proposed IBFO,multiple comparisons were made among the BFO,particle swarm optimization(PSO),and IBFO by MATLAB simulation.The simulation results show that the IBFO has a superior performance.展开更多
In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the us...In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.展开更多
The electrical circuit equivalents of magnetic device structures such as transformer require an exact knowledge of its parameters. Efficient parameter estimation technique is essential to obtain the equivalent circuit...The electrical circuit equivalents of magnetic device structures such as transformer require an exact knowledge of its parameters. Efficient parameter estimation technique is essential to obtain the equivalent circuit parameters of transformer because the parameters are used to manipulate parasitic elements and to obtain the enhanced circuit performance. In this paper, Bacterial Foraging Algorithm (BFA) has been applied to estimate the equivalent circuit parameters of single phase core type transformer. The information of open Circuit (OC) and Short Circuit (SC) tests has been utilized in BFA algorithm. The effectiveness of the proposed approach has been tested with a sample transformer and the simulation results are compared against the conventional method. The numerical results show that the proposed approach outperforms the conventional method in the aspects of solution quality.展开更多
In Mobile Ad-Hoc Networks (MANET), the group communication for multiple senders and receivers threatens the security features. The multicasting is provoked to various security attacks, eavesdropping etc., hence secure...In Mobile Ad-Hoc Networks (MANET), the group communication for multiple senders and receivers threatens the security features. The multicasting is provoked to various security attacks, eavesdropping etc., hence secure multicasting requires imperative significance. The secure multicast tree construction using Bacterial Foraging Optimization (BPO) algorithm is proposed to develop a secure multicast tree construction in MANET. During routing, the proposed algorithm utilizes the public routing proxy to hide identity of the sender and receiver from other nodes for maintaining confidentiality. The public routing proxy is estimated using bacterial foraging optimization algorithm and path reliability is evaluated after the each iteration. Path reliability enhances the security of the network from black hole attacker and DoS attackers compared to traditional approaches for secure multicast tree formation in MANETs. By simulation results, we have shown that the proposed technique offers authentication and confidentiality during secure multicasting which is compared to conventional multicast tree formation algorithms in MANETs.展开更多
This paper proposes a boost inverter model capable of coping with changes in load as well as line parameters. In order to achieve an output AC voltage higher than the input DC voltage, we can use this model consisting...This paper proposes a boost inverter model capable of coping with changes in load as well as line parameters. In order to achieve an output AC voltage higher than the input DC voltage, we can use this model consisting of a pair of DC-DC converters with a load connected differentially across them. This paper aims at developing a boost inverter that is capable of achieving a very high gain, to obtain an AC voltage of 110 Vrms from a DC input of 36 V. This is exceptionally beneficial in renewable energy applications, where the input voltage garnered is quite small, and in need of stepping up for commercial use or transmission. However, aside from the voltage level itself, lowering the rise time, settling time, peak overshoot and steady state error of the system is of cardinal importance in order to maintain a reliable output voltage. Closed loop control of the differentially connected DC-DC converters is necessary to determine the optimal stable operating point. This paper addresses the above concerns through optimization of the proportional and integral constants using the novel Bacterial Foraging Algorithm, ensuring operation at the required optimal stable operating point. Moreover, load/line disturbances may occur due to which the stability of output voltage may be compromised and THD value may increase to undesirable extents. In these cases, utilization of the output voltage is no longer viable for several applications sensitive to such voltage fluctuations. We have demonstrated that our proposed model is capable of restoring/reverting to the satisfactory sinusoidal waveform fashion within a single voltage cycle. The waveform results that demonstrate the resilience of our model to such disturbances are represented appropriately.展开更多
The airborne pollutants monitoring is an overriding task for humanity given that poor quality of air is a matter of public health, causing issues mainly in the respiratory and cardiovascular systems, specifically the ...The airborne pollutants monitoring is an overriding task for humanity given that poor quality of air is a matter of public health, causing issues mainly in the respiratory and cardiovascular systems, specifically the PM10 particle. In this contribution is generated a base model with an Adaptive Neuro Fuzzy Inference System (ANFIS) which is later optimized, using a swarm intelligence technique, named Bacteria Foraging Optimization Algorithm (BFOA). Several experiments were carried with BFOA parameters, tuning them to achieve the best configuration of said parameters that produce an optimized model, demonstrating that way, how the optimization process is influenced by choice of the parameters.展开更多
The partial 16 S r RNA gene sequences(100 to 500 bp) were widely used to reveal rumen bacterial composition influenced by diets, while quantification of the changed uncultured bacteria was inconvenient due to diffic...The partial 16 S r RNA gene sequences(100 to 500 bp) were widely used to reveal rumen bacterial composition influenced by diets, while quantification of the changed uncultured bacteria was inconvenient due to difficult designing of specific primers based on short sequences. This study evaluated the effect of forage resources on rumen bacterial diversity and developed new strategy for primer design based on short sequences to quantify the changed uncultured bacteria. Denaturing gradient gel electrophoresis(DGGE) analysis and subsequent band sequencing were used to reveal the distinct rumen bacteria composition in cows fed with two forage sources(single corn stover vs. mixed forages including alfalfa hay and corn silage). The bacterial diversity in the rumen of dairy cows fed with corn stover was lower than that with mixed forages(P0.05). The bacterium named R-UB affiliating to uncultured Succinivibrionaceae was identified, and it was abundant in the rumen of cows fed with mixed forages compared to corn stover. The full length 16 S r RNA gene sequences with identity of 97% to the R-UB 16 S r RNA gene sequence were obtained from Gen Bank and used to design specific primers to quantify uncultured bacterium R-UB. All sequences of amplicon from the new primers were of 100% identity to R-UB sequences indicating the high specificity of new primers. Quantitative PCR confirmed that abundance of R-UB in the rumen of cows fed with corn stover was lower than those fed with mixed forages(P0.01). New strategy for designing primers based on partial 16 S r RNA genes to quantify targeted uncultured bacteria was successfully developed. The rumen bacteria descending significantly in the cows fed corn stover compared to those fed mixed forages was identified as uncultured R-UB from Succinivibrionaceae.展开更多
基金supported by the National Natural Science Foundation of China(6137415361473138)+2 种基金Natural Science Foundation of Jiangsu Province(BK20151130)Six Talent Peaks Project in Jiangsu Province(2015-DZXX-011)China Scholarship Council Fund(201606845005)
文摘The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is discrete and constant,which cannot affect the situation of the solution space and limit the diversity of bacterial population. In this paper, an improved QBFO(IQBFO) algorithm is proposed, which can adaptively make the quantum rotation angle continuously updated and enhance the global search ability. In the initialization process, the modified probability of the optimal rotation angle is introduced to avoid the existence of invariant solutions. The modified operator of probability amplitude is adopted to further increase the population diversity.The tests based on benchmark functions verify the effectiveness of the proposed algorithm. Moreover, compared with the integerorder PID controller, the fractional-order proportion integration differentiation(PID) controller increases the complexity of the system with better flexibility and robustness. Thus the fractional-order PID controller is applied to the servo system. The tuning results of PID parameters of the fractional-order servo system show that the proposed algorithm has a good performance in tuning the PID parameters of the fractional-order servo system.
基金Project(61173032)supported by the National Natural Science Foundation of ChinaProject(20090406)supported by the Tianjin Scientific and Technological Development Fund of Higher Education of China
文摘The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.
文摘Fused deposition modelling (FDM) is a fast growing rapid prototyping (RP) technology due to its ability to build functional parts having complex geometrical shapes in reasonable build time. The dimensional accuracy, surface roughness, mechanical strength and above all functionality of built parts are dependent on many process variables and their settings. In this study, five important process parameters such as layer thickness, orientation, raster angle, raster width and air gap have been considered to study their effects on three responses viz., tensile, flexural and impact strength of test specimen. Experiments have been conducted using central composite design (CCD) and empirical models relating each response and process parameters have been developed. The models are validated using analysis of variance (ANOVA). Finally, bacterial foraging technique is used to suggest theoretical combination of parameter settings to achieve good strength simultaneously for all responses.
文摘Transformers are one of the main components of any power system. An accurate estimation of system be-haviour, including load flow studies, protection, and safe control of the system calls for an accurate equiva-lent circuit parameters of all system components such as generators, transformers, etc. This paper presents a methodology to estimate the equivalent circuit parameters of the Three Winding Transformer (TWT) using Bacterial Foraging Algorithm (BFA). The estimation procedure based on load test data at one particular op-erating point namely supply voltage, load currents, input power. The performance characteristics, such as efficiency and voltage regulation are considered along with the name plate data in order to minimize the er-ror between the estimated and measured data. The estimation procedure is demonstrated with a sample three winding transformer and the results are compared against the directly measured performance of TWT and genetic algorithm optimization results. The simulation results show the ability of the proposed technique to capture the true values of the machine parameters and the superiority of the results obtained using the bacte-rial foraging algorithm.
基金supported by the Key Project of Natural Science Fund of Education Department of Anhui Province under Grant No.KJ2015A058Major Program of Teaching Research of Educational Commission of Anhui Province of China under Grant No.2015zdjy059
文摘Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),which simulates the foraging behavior of “E.coli” bacterium,to tune the Gaussian membership functions parameters of an improved Takagi-Sugeno-Kang fuzzy system(C-ITSKFS) rule base.To remove the defect of the low rate of convergence and prematurity,three modifications were produced to the standard bacterial foraging optimization(BFO).As for the low accuracy of finding out all optimal solutions with multi-method functions,the IBFO was performed.In order to demonstrate the performance of the proposed IBFO,multiple comparisons were made among the BFO,particle swarm optimization(PSO),and IBFO by MATLAB simulation.The simulation results show that the IBFO has a superior performance.
文摘In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.
文摘The electrical circuit equivalents of magnetic device structures such as transformer require an exact knowledge of its parameters. Efficient parameter estimation technique is essential to obtain the equivalent circuit parameters of transformer because the parameters are used to manipulate parasitic elements and to obtain the enhanced circuit performance. In this paper, Bacterial Foraging Algorithm (BFA) has been applied to estimate the equivalent circuit parameters of single phase core type transformer. The information of open Circuit (OC) and Short Circuit (SC) tests has been utilized in BFA algorithm. The effectiveness of the proposed approach has been tested with a sample transformer and the simulation results are compared against the conventional method. The numerical results show that the proposed approach outperforms the conventional method in the aspects of solution quality.
文摘In Mobile Ad-Hoc Networks (MANET), the group communication for multiple senders and receivers threatens the security features. The multicasting is provoked to various security attacks, eavesdropping etc., hence secure multicasting requires imperative significance. The secure multicast tree construction using Bacterial Foraging Optimization (BPO) algorithm is proposed to develop a secure multicast tree construction in MANET. During routing, the proposed algorithm utilizes the public routing proxy to hide identity of the sender and receiver from other nodes for maintaining confidentiality. The public routing proxy is estimated using bacterial foraging optimization algorithm and path reliability is evaluated after the each iteration. Path reliability enhances the security of the network from black hole attacker and DoS attackers compared to traditional approaches for secure multicast tree formation in MANETs. By simulation results, we have shown that the proposed technique offers authentication and confidentiality during secure multicasting which is compared to conventional multicast tree formation algorithms in MANETs.
文摘This paper proposes a boost inverter model capable of coping with changes in load as well as line parameters. In order to achieve an output AC voltage higher than the input DC voltage, we can use this model consisting of a pair of DC-DC converters with a load connected differentially across them. This paper aims at developing a boost inverter that is capable of achieving a very high gain, to obtain an AC voltage of 110 Vrms from a DC input of 36 V. This is exceptionally beneficial in renewable energy applications, where the input voltage garnered is quite small, and in need of stepping up for commercial use or transmission. However, aside from the voltage level itself, lowering the rise time, settling time, peak overshoot and steady state error of the system is of cardinal importance in order to maintain a reliable output voltage. Closed loop control of the differentially connected DC-DC converters is necessary to determine the optimal stable operating point. This paper addresses the above concerns through optimization of the proportional and integral constants using the novel Bacterial Foraging Algorithm, ensuring operation at the required optimal stable operating point. Moreover, load/line disturbances may occur due to which the stability of output voltage may be compromised and THD value may increase to undesirable extents. In these cases, utilization of the output voltage is no longer viable for several applications sensitive to such voltage fluctuations. We have demonstrated that our proposed model is capable of restoring/reverting to the satisfactory sinusoidal waveform fashion within a single voltage cycle. The waveform results that demonstrate the resilience of our model to such disturbances are represented appropriately.
文摘The airborne pollutants monitoring is an overriding task for humanity given that poor quality of air is a matter of public health, causing issues mainly in the respiratory and cardiovascular systems, specifically the PM10 particle. In this contribution is generated a base model with an Adaptive Neuro Fuzzy Inference System (ANFIS) which is later optimized, using a swarm intelligence technique, named Bacteria Foraging Optimization Algorithm (BFOA). Several experiments were carried with BFOA parameters, tuning them to achieve the best configuration of said parameters that produce an optimized model, demonstrating that way, how the optimization process is influenced by choice of the parameters.
基金supported by the National Natural Science Foundation of China(31261140365)the National Basic Research Program of China(2011CB100804)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ASTIP-IAS12)
文摘The partial 16 S r RNA gene sequences(100 to 500 bp) were widely used to reveal rumen bacterial composition influenced by diets, while quantification of the changed uncultured bacteria was inconvenient due to difficult designing of specific primers based on short sequences. This study evaluated the effect of forage resources on rumen bacterial diversity and developed new strategy for primer design based on short sequences to quantify the changed uncultured bacteria. Denaturing gradient gel electrophoresis(DGGE) analysis and subsequent band sequencing were used to reveal the distinct rumen bacteria composition in cows fed with two forage sources(single corn stover vs. mixed forages including alfalfa hay and corn silage). The bacterial diversity in the rumen of dairy cows fed with corn stover was lower than that with mixed forages(P0.05). The bacterium named R-UB affiliating to uncultured Succinivibrionaceae was identified, and it was abundant in the rumen of cows fed with mixed forages compared to corn stover. The full length 16 S r RNA gene sequences with identity of 97% to the R-UB 16 S r RNA gene sequence were obtained from Gen Bank and used to design specific primers to quantify uncultured bacterium R-UB. All sequences of amplicon from the new primers were of 100% identity to R-UB sequences indicating the high specificity of new primers. Quantitative PCR confirmed that abundance of R-UB in the rumen of cows fed with corn stover was lower than those fed with mixed forages(P0.01). New strategy for designing primers based on partial 16 S r RNA genes to quantify targeted uncultured bacteria was successfully developed. The rumen bacteria descending significantly in the cows fed corn stover compared to those fed mixed forages was identified as uncultured R-UB from Succinivibrionaceae.