Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their int...Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their integration provides an opportunity for improved search performance.However,existing studies adopt only one genetic operation of GA,or design hybrid algorithms that divide the overall population into multiple subpopulations that evolve in parallel with limited interactions only.Differing from them,this work proposes an improved self-adaptive bat algorithm with genetic operations(SBAGO)where GA and BA are combined in a highly integrated way.Specifically,SBAGO performs their genetic operations of GA on previous search information of BA solutions to produce new exemplars that are of high-diversity and high-quality.Guided by these exemplars,SBAGO improves both BA’s efficiency and global search capability.We evaluate this approach by using 29 widely-adopted problems from four test suites.SBAGO is also evaluated by a real-life optimization problem in mobile edge computing systems.Experimental results show that SBAGO outperforms its widely-used and recently proposed peers in terms of effectiveness,search accuracy,local optima avoidance,and robustness.展开更多
In the fed-batch cultivation of Saccharomyces cerevisiae,excessive glucose addition leads to increased ethanol accumulation,which will reduce the efficiency of glucose utilization and inhibit product synthesis.Insuffi...In the fed-batch cultivation of Saccharomyces cerevisiae,excessive glucose addition leads to increased ethanol accumulation,which will reduce the efficiency of glucose utilization and inhibit product synthesis.Insufficient glucose addition limits cell growth.To properly regulate glucose feed,a different evolution algorithm based on self-adaptive control strategy was proposed,consisting of three modules(PID,system identification and parameter optimization).Performance of the proposed and conventional PID controllers was validated and compared in simulated and experimental cultivations.In the simulation,cultivation with the self-adaptive control strategy had a more stable glucose feed rate and concentration,more stable ethanol concentration around the set-point(1.0 g·L^(-1)),and final biomass concentration of 34.5 g-DCW·L^(-1),29.2%higher than that with a conventional PID control strategy.In the experiment,the cultivation with the self-adaptive control strategy also had more stable glucose and ethanol concentrations,as well as a final biomass concentration that was 37.4%higher than that using the conventional strategy.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful...Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful in overcoming non-linear dynamic behavior, uncertain and time-varying parameters, un-modeled dynamics, and couples between the automatic turbulence control (ATC) and the automatic acid temperature control (AATC) with varying parameters during the operation process. The quasi-cascade control system of inner and outer loop self-adaptive fuzzy PID controller was built, which could effectively control the pickling speed of plates and strips. The simulated results and real application indicate that the plates and strips acid pickling speed control system has good performances of adaptively tracking the parameter variations and anti-disturbances, which ensures the match of acid pickling temperature and turbulence of flowing with acid pickling speed, improving the surface quality of plates and strips acid pickling, and energy efficiency.展开更多
A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neut...A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.展开更多
The multi-pass turning operation is one of the most commonly used machining methods in manufacturing field.The main objective of this operation is to minimize the unit production cost.This paper proposes a Gaussian qu...The multi-pass turning operation is one of the most commonly used machining methods in manufacturing field.The main objective of this operation is to minimize the unit production cost.This paper proposes a Gaussian quantum-behaved bat algorithm(GQBA)to solve the problem of multi-pass turning operation.The proposed algorithm mainly includes the following two improvements.The first improvement is to incorporate the current optimal positions of quantum bats and the global best position into the stochastic attractor to facilitate population diversification.The second improvement is to use a Gaussian distribution instead of the uniform distribution to update the positions of the quantum-behaved bats,thus performing a more accurate search and avoiding premature convergence.The performance of the presented GQBA is demonstrated through numerical benchmark functions and amulti-pass turning operation problem.Thirteen classical benchmark functions are utilized in the comparison experiments,and the experimental results for accuracy and convergence speed demonstrate that,in most cases,the GQBA can provide a better search capability than other algorithms.Furthermore,GQBA is applied to an optimization problem formulti-pass turning,which is designed tominimize the production cost while considering many practical machining constraints in the machining process.The experimental results indicate that the GQBA outperforms other comparison algorithms in terms of cost reduction,which proves the effectiveness of the GQBA.展开更多
With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-base...With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare.Biomedical Electrocardiogram(ECG)signals are generally utilized in examination and diagnosis of Cardiovascular Diseases(CVDs)since it is quick and non-invasive in nature.Due to increasing number of patients in recent years,the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients.In such scenario computer-assisted automated diagnostic tools are important for classification of ECG signals.The current study devises an Improved Bat Algorithm with Deep Learning Based Biomedical ECGSignal Classification(IBADL-BECGC)approach.To accomplish this,the proposed IBADL-BECGC model initially pre-processes the input signals.Besides,IBADL-BECGC model applies NasNet model to derive the features from test ECG signals.In addition,Improved Bat Algorithm(IBA)is employed to optimally fine-tune the hyperparameters related to NasNet approach.Finally,Extreme Learning Machine(ELM)classification algorithm is executed to perform ECG classification method.The presented IBADL-BECGC model was experimentally validated utilizing benchmark dataset.The comparison study outcomes established the improved performance of IBADL-BECGC model over other existing methodologies since the former achieved a maximum accuracy of 97.49%.展开更多
Web services are provided as reusable software components in the services-oriented architecture.More complicated composite services can be combined from these components to satisfy the user requirements represented as...Web services are provided as reusable software components in the services-oriented architecture.More complicated composite services can be combined from these components to satisfy the user requirements represented as a workflow with specified Quality of Service(QoS)limitations.The workflow consists of tasks where many services can be considered for each task.Searching for optimal services combination and optimizing the overall QoS limitations is a Non-deterministic Polynomial(NP)-hard problem.This work focuses on the Web Service Composition(WSC)problem and proposes a new service composition algorithm based on the micro-bats behavior while hunting the prey.The proposed algorithm determines the optimal combination of the web services to satisfy the complex user needs.It also addresses the Bat Algorithm(BA)shortcomings,such as the tradeoff among exploration and exploitation searching mechanisms,local optima,and convergence rate.The proposed enhancement includes a developed cooperative and adaptive population initialization mechanism.An elitist mechanism is utilized to address the BA convergence rate.The tradeoff between exploration and exploitation is handled through a neighborhood search mechanism.Several benchmark datasets are selected to evaluate the proposed bat algorithm’s performance.The simulation results are estimated using the average fitness value,the standard deviation of the fitness value,and an average of the execution time and compared with four bat-inspired algorithms.It is observed from the simulation results that introduced enhancement obtains significant results.展开更多
In the Internet of Things(IoT),the users have complex needs,and the Web Service Composition(WSC)was introduced to address these needs.The WSC’s main objective is to search for the optimal combination of web services ...In the Internet of Things(IoT),the users have complex needs,and the Web Service Composition(WSC)was introduced to address these needs.The WSC’s main objective is to search for the optimal combination of web services in response to the user needs and the level of Quality of Services(QoS)constraints.The challenge of this problem is the huge number of web services that achieve similar functionality with different levels of QoS constraints.In this paper,we introduce an extension of our previous works on the Artificial Bee Colony(ABC)and Bat Algorithm(BA).A new hybrid algorithm was proposed between the ABC and BA to achieve a better tradeoff between local exploitation and global search.The bat agent is used to improve the solution of exhausted bees after a threshold(limits),and also an Elitist Strategy(ES)is added to BA to increase the convergence rate.The performance and convergence behavior of the proposed hybrid algorithm was tested using extensive comparative experiments with current state-ofthe-art nature-inspired algorithms on 12 benchmark datasets using three evaluation criteria(average fitness values,best fitness values,and execution time)that were measured for 30 different runs.These datasets are created from real-world datasets and artificially to form different scale sizes of WSC datasets.The results show that the proposed algorithm enhances the search performance and convergence rate on finding the near-optimal web services combination compared to competitors.TheWilcoxon signed-rank significant test is usedwhere the proposed algorithm results significantly differ fromother algorithms on 100%of datasets.展开更多
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied...In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.展开更多
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se...There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.展开更多
Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids ...Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively.展开更多
In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation fa...In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.展开更多
Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index ...Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance.展开更多
In order to solve the problem between searching performance and convergence of genetic algorithms, a fast genetic algorithm generalized self-adaptive genetic algorithm (GSAGA) is presented. (1) Evenly distributed init...In order to solve the problem between searching performance and convergence of genetic algorithms, a fast genetic algorithm generalized self-adaptive genetic algorithm (GSAGA) is presented. (1) Evenly distributed initial population is generated. (2) Superior individuals are not broken because of crossover and mutation operation for they are sent to subgeneration directly. (3) High quality im- migrants are introduced according to the condition of the population schema. (4) Crossover and mutation are operated on self-adaptation. Therefore, GSAGA solves the coordination problem between convergence and searching performance. In GSAGA, the searching per- formance and global convergence are greatly improved compared with many existing genetic algorithms. Through simulation, the val- idity of this modified genetic algorithm is proved.展开更多
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se...To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum.展开更多
The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper...The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper, we present new iterative algorithms for solving the split common fixed point problem of demimetric mappings in Hilbert spaces. Moreover, our algorithm does not need any prior information of the operator norm. Weak and strong convergence theorems are given under some mild assumptions. The results in this paper are the extension and improvement of the recent results in the literature.展开更多
Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is ina...Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is inaccurate and the operating conditions are uncertain. Based on the proportional navigation, the fuzzy logic and the genetic algorithm are combined to develop an evolutionary fuzzy navigation law with self-adapt region for the air-to-air missile guidance. The line of sight (LOS) rate and the closing speed between the missile and the target are inputs of the fuzzy controller. The output of the fuzzy controller is the commanded acceleration. Then a nonlinear function based on the conventional fuzzy logic control is imported to change the region. This nonlinear function can be changed with the input variables. So the dynamic change of the fuzzy variable region is achieved. The guidance law is optimized by the genetic algorithm. Simulation results of air-to-air missile attack using MATLAB show that the method needs less acceleration and shorter flying time, and its realization is simple.[KH*3/4D]展开更多
Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other...Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other hand,it is easy to fall into local optimum.Therefore,for typical BA algorithms,the ability of exploration and exploitation is not strong enough and it is hard to find a precise result.In this paper,we propose a novel bat algorithm based on cross boundary learning(CBL)and uniform explosion strategy(UES),namely BABLUE in short,to avoid the above contradiction and achieve both fast convergence and high quality.Different from previous opposition-based learning,the proposed CBL can expand the search area of population and then maintain the ability of global exploration in the process of fast convergence.In order to enhance the ability of local exploitation of the proposed algorithm,we propose UES,which can achieve almost the same search precise as that of firework explosion algorithm but consume less computation resource.BABLUE is tested with numerous experiments on unimodal,multimodal,one-dimensional,high-dimensional and discrete problems,and then compared with other typical intelligent optimization algorithms.The results show that the proposed algorithm outperforms other algorithms.展开更多
基金This work was supported in part by the Fundamental Research Funds for the Central Universities(YWF-22-L-1203)the National Natural Science Foundation of China(62173013,62073005)+1 种基金the National Key Research and Development Program of China(2020YFB1712203)U.S.National Science Foundation(CCF-0939370,CCF-1908308).
文摘Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their integration provides an opportunity for improved search performance.However,existing studies adopt only one genetic operation of GA,or design hybrid algorithms that divide the overall population into multiple subpopulations that evolve in parallel with limited interactions only.Differing from them,this work proposes an improved self-adaptive bat algorithm with genetic operations(SBAGO)where GA and BA are combined in a highly integrated way.Specifically,SBAGO performs their genetic operations of GA on previous search information of BA solutions to produce new exemplars that are of high-diversity and high-quality.Guided by these exemplars,SBAGO improves both BA’s efficiency and global search capability.We evaluate this approach by using 29 widely-adopted problems from four test suites.SBAGO is also evaluated by a real-life optimization problem in mobile edge computing systems.Experimental results show that SBAGO outperforms its widely-used and recently proposed peers in terms of effectiveness,search accuracy,local optima avoidance,and robustness.
文摘In the fed-batch cultivation of Saccharomyces cerevisiae,excessive glucose addition leads to increased ethanol accumulation,which will reduce the efficiency of glucose utilization and inhibit product synthesis.Insufficient glucose addition limits cell growth.To properly regulate glucose feed,a different evolution algorithm based on self-adaptive control strategy was proposed,consisting of three modules(PID,system identification and parameter optimization).Performance of the proposed and conventional PID controllers was validated and compared in simulated and experimental cultivations.In the simulation,cultivation with the self-adaptive control strategy had a more stable glucose feed rate and concentration,more stable ethanol concentration around the set-point(1.0 g·L^(-1)),and final biomass concentration of 34.5 g-DCW·L^(-1),29.2%higher than that with a conventional PID control strategy.In the experiment,the cultivation with the self-adaptive control strategy also had more stable glucose and ethanol concentrations,as well as a final biomass concentration that was 37.4%higher than that using the conventional strategy.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
基金Project(51090385) supported by the National Natural Science Foundation of ChinaProject(2001IB001) supported by Yunnan Provincial Science and Technology Fund, China
文摘Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful in overcoming non-linear dynamic behavior, uncertain and time-varying parameters, un-modeled dynamics, and couples between the automatic turbulence control (ATC) and the automatic acid temperature control (AATC) with varying parameters during the operation process. The quasi-cascade control system of inner and outer loop self-adaptive fuzzy PID controller was built, which could effectively control the pickling speed of plates and strips. The simulated results and real application indicate that the plates and strips acid pickling speed control system has good performances of adaptively tracking the parameter variations and anti-disturbances, which ensures the match of acid pickling temperature and turbulence of flowing with acid pickling speed, improving the surface quality of plates and strips acid pickling, and energy efficiency.
基金supported by the National Key R&D Program of the MOST of China(No.2016YFA0300204)the National Natural Science Foundation of China(Nos.11227902)as part of the Si PáME2beamline project+1 种基金supported by the National Natural Science Foundation of China(No.41774120)the Sichuan Science and Technology Program(No.2021YJ0329)。
文摘A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.
基金supported by the the National Natural Science Foundation of Fujian Province of China (2020J01697,2020J01699).
文摘The multi-pass turning operation is one of the most commonly used machining methods in manufacturing field.The main objective of this operation is to minimize the unit production cost.This paper proposes a Gaussian quantum-behaved bat algorithm(GQBA)to solve the problem of multi-pass turning operation.The proposed algorithm mainly includes the following two improvements.The first improvement is to incorporate the current optimal positions of quantum bats and the global best position into the stochastic attractor to facilitate population diversification.The second improvement is to use a Gaussian distribution instead of the uniform distribution to update the positions of the quantum-behaved bats,thus performing a more accurate search and avoiding premature convergence.The performance of the presented GQBA is demonstrated through numerical benchmark functions and amulti-pass turning operation problem.Thirteen classical benchmark functions are utilized in the comparison experiments,and the experimental results for accuracy and convergence speed demonstrate that,in most cases,the GQBA can provide a better search capability than other algorithms.Furthermore,GQBA is applied to an optimization problem formulti-pass turning,which is designed tominimize the production cost while considering many practical machining constraints in the machining process.The experimental results indicate that the GQBA outperforms other comparison algorithms in terms of cost reduction,which proves the effectiveness of the GQBA.
基金the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under Grant Number(71/43)Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R203)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR29).
文摘With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare.Biomedical Electrocardiogram(ECG)signals are generally utilized in examination and diagnosis of Cardiovascular Diseases(CVDs)since it is quick and non-invasive in nature.Due to increasing number of patients in recent years,the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients.In such scenario computer-assisted automated diagnostic tools are important for classification of ECG signals.The current study devises an Improved Bat Algorithm with Deep Learning Based Biomedical ECGSignal Classification(IBADL-BECGC)approach.To accomplish this,the proposed IBADL-BECGC model initially pre-processes the input signals.Besides,IBADL-BECGC model applies NasNet model to derive the features from test ECG signals.In addition,Improved Bat Algorithm(IBA)is employed to optimally fine-tune the hyperparameters related to NasNet approach.Finally,Extreme Learning Machine(ELM)classification algorithm is executed to perform ECG classification method.The presented IBADL-BECGC model was experimentally validated utilizing benchmark dataset.The comparison study outcomes established the improved performance of IBADL-BECGC model over other existing methodologies since the former achieved a maximum accuracy of 97.49%.
基金The author extend their appreciation to Deputyship for research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IF-PSAU-2022/01/19619).
文摘Web services are provided as reusable software components in the services-oriented architecture.More complicated composite services can be combined from these components to satisfy the user requirements represented as a workflow with specified Quality of Service(QoS)limitations.The workflow consists of tasks where many services can be considered for each task.Searching for optimal services combination and optimizing the overall QoS limitations is a Non-deterministic Polynomial(NP)-hard problem.This work focuses on the Web Service Composition(WSC)problem and proposes a new service composition algorithm based on the micro-bats behavior while hunting the prey.The proposed algorithm determines the optimal combination of the web services to satisfy the complex user needs.It also addresses the Bat Algorithm(BA)shortcomings,such as the tradeoff among exploration and exploitation searching mechanisms,local optima,and convergence rate.The proposed enhancement includes a developed cooperative and adaptive population initialization mechanism.An elitist mechanism is utilized to address the BA convergence rate.The tradeoff between exploration and exploitation is handled through a neighborhood search mechanism.Several benchmark datasets are selected to evaluate the proposed bat algorithm’s performance.The simulation results are estimated using the average fitness value,the standard deviation of the fitness value,and an average of the execution time and compared with four bat-inspired algorithms.It is observed from the simulation results that introduced enhancement obtains significant results.
基金The authors extend their appreciation to the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number 2022/01/22636.
文摘In the Internet of Things(IoT),the users have complex needs,and the Web Service Composition(WSC)was introduced to address these needs.The WSC’s main objective is to search for the optimal combination of web services in response to the user needs and the level of Quality of Services(QoS)constraints.The challenge of this problem is the huge number of web services that achieve similar functionality with different levels of QoS constraints.In this paper,we introduce an extension of our previous works on the Artificial Bee Colony(ABC)and Bat Algorithm(BA).A new hybrid algorithm was proposed between the ABC and BA to achieve a better tradeoff between local exploitation and global search.The bat agent is used to improve the solution of exhausted bees after a threshold(limits),and also an Elitist Strategy(ES)is added to BA to increase the convergence rate.The performance and convergence behavior of the proposed hybrid algorithm was tested using extensive comparative experiments with current state-ofthe-art nature-inspired algorithms on 12 benchmark datasets using three evaluation criteria(average fitness values,best fitness values,and execution time)that were measured for 30 different runs.These datasets are created from real-world datasets and artificially to form different scale sizes of WSC datasets.The results show that the proposed algorithm enhances the search performance and convergence rate on finding the near-optimal web services combination compared to competitors.TheWilcoxon signed-rank significant test is usedwhere the proposed algorithm results significantly differ fromother algorithms on 100%of datasets.
基金Projects(61203020,61403190)supported by the National Natural Science Foundation of ChinaProject(BK20141461)supported by the Jiangsu Province Natural Science Foundation,China
文摘In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.
基金supported by the Aviation Science Funds of China(2010ZC13012)the Fund of Jiangsu Innovation Program for Graduate Education (CXLX11 0203)
文摘There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.
文摘Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively.
基金Supported by the Major State Basic Research Development Program of China (2012CB720500)the National Natural Science Foundation of China (Key Program: U1162202)+1 种基金the National Natural Science Foundation of China (General Program:61174118)Shanghai Leading Academic Discipline Project (B504)
文摘In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.
基金Project(61273187)supported by the National Natural Science Foundation of ChinaProject(61321003)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance.
文摘In order to solve the problem between searching performance and convergence of genetic algorithms, a fast genetic algorithm generalized self-adaptive genetic algorithm (GSAGA) is presented. (1) Evenly distributed initial population is generated. (2) Superior individuals are not broken because of crossover and mutation operation for they are sent to subgeneration directly. (3) High quality im- migrants are introduced according to the condition of the population schema. (4) Crossover and mutation are operated on self-adaptation. Therefore, GSAGA solves the coordination problem between convergence and searching performance. In GSAGA, the searching per- formance and global convergence are greatly improved compared with many existing genetic algorithms. Through simulation, the val- idity of this modified genetic algorithm is proved.
文摘To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum.
文摘The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper, we present new iterative algorithms for solving the split common fixed point problem of demimetric mappings in Hilbert spaces. Moreover, our algorithm does not need any prior information of the operator norm. Weak and strong convergence theorems are given under some mild assumptions. The results in this paper are the extension and improvement of the recent results in the literature.
文摘Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is inaccurate and the operating conditions are uncertain. Based on the proportional navigation, the fuzzy logic and the genetic algorithm are combined to develop an evolutionary fuzzy navigation law with self-adapt region for the air-to-air missile guidance. The line of sight (LOS) rate and the closing speed between the missile and the target are inputs of the fuzzy controller. The output of the fuzzy controller is the commanded acceleration. Then a nonlinear function based on the conventional fuzzy logic control is imported to change the region. This nonlinear function can be changed with the input variables. So the dynamic change of the fuzzy variable region is achieved. The guidance law is optimized by the genetic algorithm. Simulation results of air-to-air missile attack using MATLAB show that the method needs less acceleration and shorter flying time, and its realization is simple.[KH*3/4D]
基金Supported by the National Natural Science Foundation of China(61472289)the Open Project Program of the State Key Laboratory of Digital Manufacturing Equipment and Technology(DMETKF2017016)
文摘Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other hand,it is easy to fall into local optimum.Therefore,for typical BA algorithms,the ability of exploration and exploitation is not strong enough and it is hard to find a precise result.In this paper,we propose a novel bat algorithm based on cross boundary learning(CBL)and uniform explosion strategy(UES),namely BABLUE in short,to avoid the above contradiction and achieve both fast convergence and high quality.Different from previous opposition-based learning,the proposed CBL can expand the search area of population and then maintain the ability of global exploration in the process of fast convergence.In order to enhance the ability of local exploitation of the proposed algorithm,we propose UES,which can achieve almost the same search precise as that of firework explosion algorithm but consume less computation resource.BABLUE is tested with numerous experiments on unimodal,multimodal,one-dimensional,high-dimensional and discrete problems,and then compared with other typical intelligent optimization algorithms.The results show that the proposed algorithm outperforms other algorithms.