Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic device...Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.展开更多
Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to...Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.展开更多
A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive...A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive strategy of resources is required to deal with dynamic nature of requests based on run time change in workload.In this paper we proposed a Cloud-based Adaptive Resource Scheduling Strategy(CARSS)Framework that formally addresses these issues and is more expressive than traditional approaches.The decision making in CARSS is based on more than one factors.TheMAPE-K based framework determines the state of the resources based on their current utilization.Timed-Arc Petri Net(TAPN)is used to model system formally and behaviour is expressed in TCTL,while TAPAAL model checker verifies the underline properties of the system.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of c...The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of charge carrier,and surface site reaction.Recent years have witnessed the encouraging progress of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z) for photocatalytic applications spanning various fields.However,despite the maturity of current research,the interaction between the bulk/surface state and the performance of Bi_(x)O_(y)Br_(z) has not yet been fully understood and highlighted.In this regard,a timely tutorial overview is quite urgent to summarize the most recent key progress and outline developing obstacles in this exciting area.Herein,the structural characteristics and fundamental principles of Bi_(x)O_(y)Br_(z)for driving photocatalytic reaction as well as related key issues are firstly reviewed.Then,we for the first time summarized different self-adaptive engineering processes over Bi_(x)O_(y)Br_(z)followed by a classification of the generation approaches towards diverse Bi_(x)O_(y)Br_(z)materials.The features of different strategies,the up-to-date characterization techniques to detect bulk/surface states,and the effect of bulk/surface states on improving the photoactivity of Bi_(x)O_(y)Br_(z)in expanded applications are further discussed.Finally,the present research status,challenges,and future research opportunities of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z)are prospected.It is anticipated that this critical review can trigger deeper investigations and attract upcoming innovative ideas on the rational design of Bi_(x)O_(y)Br_(z)-based photocatalysts.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and ...Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.展开更多
Over the past century,age-related diseases,such as cancer,type-2 diabetes,obesity,and mental illness,have shown a significant increase,negatively impacting overall quality of life.Studies on aged animal models have un...Over the past century,age-related diseases,such as cancer,type-2 diabetes,obesity,and mental illness,have shown a significant increase,negatively impacting overall quality of life.Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels,including transcriptional,translational,and post-translational processes,resulting from cellular stress and circadian derangements.The circadian clock emerges as a key regulator,sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes,such as stem-cell function,cellular stress responses,and inter-tissue communication,which become disrupted during aging.Given the crucial role of hypothalamic circuits in regulating organismal physiology,metabolic control,sleep homeostasis,and circadian rhythms,and their dependence on these processes,strategies aimed at enhancing hypothalamic and circadian function,including pharmacological and non-pharmacological approaches,offer systemic benefits for healthy aging.Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions,like the hypothalamus,while reducing side effects associated with systemic drug delivery,thereby presenting new therapeutic possibilities for diverse age-related conditions.展开更多
The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders....The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders.In this study,the modulatory effects of piperine(PIP)on lipid metabolism homeostasis,gut microbiota community and circadian rhythm of hepatic clock gene expressions in obese rats were investigated.The Sprague-Dawley(SD)rats were fed with normal diet(ND),HFD and HFD supplemented with PIP,respectively.After 9 weeks,rats were sacrificed with tissue and fecal samples collected for circadian analysis.Results showed that chronic PIP administration ameliorated the obesity-induced alterations in lipid metabolism and dysregulation of hepatic clock gene expressions in obese rats.The gut microbial communities studied through 16S rRNA sequencing showed that PIP ameliorated the imbalanced nicrobiota and recovered the circadian rhythm of Lactobacillaceae,Desulfovibrionaceae,Paraprevotellaceae,and Lachnospiraceae.The fecal metabolic profiles indicated that 3-dehydroshikimate,cytidine and lithocholyltaurine were altered,which were involved in the amino acid and fatty acid metabolism process.These findings could provide theoretical basis for PIP to work as functional food to alleviate the lipid metabolism disorder,circadian rhythm misalignment,and gut microbiota dysbiosis with wide applications in the food and pharmaceutic industries.展开更多
With the continuous miniaturization of electronic devices,microelectromechanical system(MEMS)oscillators that can be combined with integrated circuits have attracted increasing attention.This study reports a MEMS Huyg...With the continuous miniaturization of electronic devices,microelectromechanical system(MEMS)oscillators that can be combined with integrated circuits have attracted increasing attention.This study reports a MEMS Huygens clock based on the synchronization principle,comprising two synchronized MEMS oscillators and a frequency compensation system.The MEMS Huygens clock improved shorttime stability,improving the Allan deviation by a factor of 3.73 from 19.3 to 5.17 ppb at 1 s.A frequency compensation system based on the MEMS oscillator’s temperature-frequency characteristics was developed to compensate for the frequency shift of the MEMS Huygens clock by controlling the resonator current.This effectively improved the long-term stability of the oscillator,with the Allan deviation improving by 1.6343105 times to 30.9 ppt at 6000 s.The power consumption for compensating both oscillators simultaneously is only 2.85 mW·℃^(-1).Our comprehensive solution scheme provides a novel and precise engineering solution for achieving high-precision MEMS oscillators and extends synchronization applications in MEMS.展开更多
A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble...A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.展开更多
Precise timing of flowering in plants is critical for their growth and reproductive processes.One factor controlling flowering time is the cycle of light and darkness within a day,known as the photoperiod.Plants are c...Precise timing of flowering in plants is critical for their growth and reproductive processes.One factor controlling flowering time is the cycle of light and darkness within a day,known as the photoperiod.Plants are classified into long-day,short-day,and day-neutral plants based on light requirements for floral initiation.Although the molecular mechanisms that govern this differentiation remain incompletely understood,studies have consistently shown that the circadian clock plays a central role in regulating photoperiod response across diverse plant species.However,there is a scarcity of reviews describing the regulatory network linking the circadian clock with photoperiodic flowering.This review summarizes that regulatory network,focusing on the distinct roles of clock genes in long-day and short-day plants.We also discuss the strategies of clock gene mutations contributing to geographic variation in longday and short-day crops.展开更多
We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as l...We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.展开更多
This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic st...This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic state preparation,microwave interrogation, and transition probability detection, are integrated into the cylindrical microwave cavity to achieve a high-performance and compact physics package for the space cold atom clock. We present the detailed design and ground-test results of the cold atom clock physics package in this article, which demonstrates a frequency stability of 1.2×10^(-12) τ^(-1/2) with a Ramsey linewidth of 12.5 Hz, and a better performance is predicted with a 1 Hz or a narrower Ramsey linewidth in microgravity environment. The miniaturized cold atom clock based on intracavity cooling has great potential for achieving space high-precision time-frequency reference in the future.展开更多
The rodent running-wheel recording apparatus is a reliable approach for studying cir-cadian rhythm.This study demonstrated how to construct a simple and intelligent running-wheel recording system.The running wheel was...The rodent running-wheel recording apparatus is a reliable approach for studying cir-cadian rhythm.This study demonstrated how to construct a simple and intelligent running-wheel recording system.The running wheel was attached to the cage's base,whereas the Hall sensor was attached to the cage's cover.Then,the RJ25 adaptor relayed the running signal to the main control board.Finally,the main control board was connected to the USB port of the computer with the USB connection.Data were collected using the online-accessible,self-created software Magturning.Through Magturning,generated data were saved and exported in real time.Afterward,the device was validated by collecting data on the locomotor activities of mice under dif-ferent light conditions.In conclusion,this new device can record circadian activity of rodents.Our device is appropriate for interdisciplinary investigations related to biological clock research.展开更多
As the body’s internal clock,the circadian rhythm regulates the energy expenditure,appetite,and sleep.There exists a close relationship between the host circadian rhythm and gut microbiota.In this work,a circadian di...As the body’s internal clock,the circadian rhythm regulates the energy expenditure,appetite,and sleep.There exists a close relationship between the host circadian rhythm and gut microbiota.In this work,a circadian disorder mouse model induced by constant darkness(CD)was constructed to investigate the regulating effects of capsaicin(CAP)on disturbances of metabolism homeostasis and gut microbiota in the respect of circadian rhythm-related mechanisms.Our results indicated that CAP reduced weight gain induced by circadian rhythm disorder in mice by inhibiting fat accumulation in liver and adipose tissue.The rhythmic expressions of circadian clock genes and lipid-metabolism related genes in liver were also recovered by CAP.Microbial study using 16S rRNA sequencing revealed that CAP modulated the gut microbiota richness,diversity and composition,and restored diurnal oscillations of gut microbes at the phylum and family level.These results indicated that CAP could alleviate CD-induced hepatic clock gene disruption and gut microbiota dysbiosis in mice,providing theoretical basis for CAP to be used as a muti-functional ingredient with great healthpromoting effects.展开更多
Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency referenc...Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.展开更多
Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external...Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W.展开更多
Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocks...Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocksmounted on a rod uniformly moving parallel with the rod’s length cannot besynchronized, but clocks attached to a stationary rod can. He dismissed thisdiscrepancy by claiming simultaneity and clock synchronization were not commonbetween inertial frames, but this paper proves with both Galilean and Lorentztransformations that simultaneity and clock synchronization are preservedbetween inertial frames. His derivation means moving clocks can never besynchronized in a “resting” inertial frame. Ultraprecise atomic clocks intimekeeping labs daily contradict his results. No algebraic error occurred inEinstein’s derivations. The two cases of clocksattached to a rod reveal three major conflicts with the currentsecond postulate. The net velocity between a photon source and detector plusthe “universal” velocity c is mathematically equivalent toEinstein’s clock synchronization method. As the ultraprecise timekeepingcommunity daily synchronizes atomic clocks on the moving Earth withultraprecise time uncertainty well below Einstein’s lowest limit ofsynchronization, the theoretical resolution of the apparent conflict isaccomplished by expanding the second relativity postulate to incorporate thenet velocity between the photon source and detector with the emitted velocity c as components of the total velocity c. This means the magnitudeof the total photon velocity can exceed the speed limit (299792458 m/s) set by the standard velocity c. .展开更多
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1C1C1008831).This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Ministry of Trade,Industry and Energy of Korea(No.RS-2023-00244330).S J P was supported by Basic Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1A6A1A03025526).
文摘Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.
基金the State Grid Liaoning Electric Power Supply Co.,Ltd.(Research on Scheduling Decision Technology Based on Interactive Reinforcement Learning for Adapting High Proportion of New Energy,No.2023YF-49).
文摘Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.
文摘A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive strategy of resources is required to deal with dynamic nature of requests based on run time change in workload.In this paper we proposed a Cloud-based Adaptive Resource Scheduling Strategy(CARSS)Framework that formally addresses these issues and is more expressive than traditional approaches.The decision making in CARSS is based on more than one factors.TheMAPE-K based framework determines the state of the resources based on their current utilization.Timed-Arc Petri Net(TAPN)is used to model system formally and behaviour is expressed in TCTL,while TAPAAL model checker verifies the underline properties of the system.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金the National Natural Science Foundation of China(22102126)the Natural Science Foundation of Hubei Province(2020CFB124)+2 种基金the Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials(Wuhan University of Science and Technology)the Hubei Provincial Department of Education for the"Chutian Scholar"programthe support of the"CUG Scholar"Scientific Research Funds at China University of Geosciences(Wuhan)(Project No.2022187)。
文摘The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of charge carrier,and surface site reaction.Recent years have witnessed the encouraging progress of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z) for photocatalytic applications spanning various fields.However,despite the maturity of current research,the interaction between the bulk/surface state and the performance of Bi_(x)O_(y)Br_(z) has not yet been fully understood and highlighted.In this regard,a timely tutorial overview is quite urgent to summarize the most recent key progress and outline developing obstacles in this exciting area.Herein,the structural characteristics and fundamental principles of Bi_(x)O_(y)Br_(z)for driving photocatalytic reaction as well as related key issues are firstly reviewed.Then,we for the first time summarized different self-adaptive engineering processes over Bi_(x)O_(y)Br_(z)followed by a classification of the generation approaches towards diverse Bi_(x)O_(y)Br_(z)materials.The features of different strategies,the up-to-date characterization techniques to detect bulk/surface states,and the effect of bulk/surface states on improving the photoactivity of Bi_(x)O_(y)Br_(z)in expanded applications are further discussed.Finally,the present research status,challenges,and future research opportunities of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z)are prospected.It is anticipated that this critical review can trigger deeper investigations and attract upcoming innovative ideas on the rational design of Bi_(x)O_(y)Br_(z)-based photocatalysts.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金supported by the Postdoctoral Science Foundation of China under Grant No.2020M683736partly by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456+2 种基金partly by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038partly by the Haiyan foundation of Harbin Medical University Cancer Hospital under Grant No.JJMS2021-28partly by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 and HSDSSCX2022-19.
文摘Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.
基金supported by National Council of Science and Technology(CONACYT)(grants FC 2016/2672 and FOSISS 272757),INMEGEN(09/2017/I)the Ministry of Education,Science,Technology and Innovation of Mexico City(SECTEI)(grant 228/2021).
文摘Over the past century,age-related diseases,such as cancer,type-2 diabetes,obesity,and mental illness,have shown a significant increase,negatively impacting overall quality of life.Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels,including transcriptional,translational,and post-translational processes,resulting from cellular stress and circadian derangements.The circadian clock emerges as a key regulator,sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes,such as stem-cell function,cellular stress responses,and inter-tissue communication,which become disrupted during aging.Given the crucial role of hypothalamic circuits in regulating organismal physiology,metabolic control,sleep homeostasis,and circadian rhythms,and their dependence on these processes,strategies aimed at enhancing hypothalamic and circadian function,including pharmacological and non-pharmacological approaches,offer systemic benefits for healthy aging.Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions,like the hypothalamus,while reducing side effects associated with systemic drug delivery,thereby presenting new therapeutic possibilities for diverse age-related conditions.
基金financially supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2019ZT08N291)the National Natural Science Foundation of China (31901689)the Natural Science Foundation of Guangdong Province,China (2021A1515012124)。
文摘The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders.In this study,the modulatory effects of piperine(PIP)on lipid metabolism homeostasis,gut microbiota community and circadian rhythm of hepatic clock gene expressions in obese rats were investigated.The Sprague-Dawley(SD)rats were fed with normal diet(ND),HFD and HFD supplemented with PIP,respectively.After 9 weeks,rats were sacrificed with tissue and fecal samples collected for circadian analysis.Results showed that chronic PIP administration ameliorated the obesity-induced alterations in lipid metabolism and dysregulation of hepatic clock gene expressions in obese rats.The gut microbial communities studied through 16S rRNA sequencing showed that PIP ameliorated the imbalanced nicrobiota and recovered the circadian rhythm of Lactobacillaceae,Desulfovibrionaceae,Paraprevotellaceae,and Lachnospiraceae.The fecal metabolic profiles indicated that 3-dehydroshikimate,cytidine and lithocholyltaurine were altered,which were involved in the amino acid and fatty acid metabolism process.These findings could provide theoretical basis for PIP to work as functional food to alleviate the lipid metabolism disorder,circadian rhythm misalignment,and gut microbiota dysbiosis with wide applications in the food and pharmaceutic industries.
基金supported by the National Key Research and Development Program of China(2022YFB3203600)the National Natural Science Foundation of China(52075432)the Program for Innovation Team of Shaanxi Province(2021TD-23).
文摘With the continuous miniaturization of electronic devices,microelectromechanical system(MEMS)oscillators that can be combined with integrated circuits have attracted increasing attention.This study reports a MEMS Huygens clock based on the synchronization principle,comprising two synchronized MEMS oscillators and a frequency compensation system.The MEMS Huygens clock improved shorttime stability,improving the Allan deviation by a factor of 3.73 from 19.3 to 5.17 ppb at 1 s.A frequency compensation system based on the MEMS oscillator’s temperature-frequency characteristics was developed to compensate for the frequency shift of the MEMS Huygens clock by controlling the resonator current.This effectively improved the long-term stability of the oscillator,with the Allan deviation improving by 1.6343105 times to 30.9 ppt at 6000 s.The power consumption for compensating both oscillators simultaneously is only 2.85 mW·℃^(-1).Our comprehensive solution scheme provides a novel and precise engineering solution for achieving high-precision MEMS oscillators and extends synchronization applications in MEMS.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB3900701)the Science and Technology Plan Project of the State Administration for Market Regulation of China (Grant No.2023MK178)the National Natural Science Foundation of China (Grant No.42227802)。
文摘A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.
基金This work was supported by Laboratory of Lingnan Modern Agriculture Project(NZ2021001)State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources(SKICUSAa202007)+1 种基金Natural Science Foundation of Guangdong Province(2022A1515011027,2021A1515012148)the Double Firstclass Discipline Promotion Project(2023B10564004).
文摘Precise timing of flowering in plants is critical for their growth and reproductive processes.One factor controlling flowering time is the cycle of light and darkness within a day,known as the photoperiod.Plants are classified into long-day,short-day,and day-neutral plants based on light requirements for floral initiation.Although the molecular mechanisms that govern this differentiation remain incompletely understood,studies have consistently shown that the circadian clock plays a central role in regulating photoperiod response across diverse plant species.However,there is a scarcity of reviews describing the regulatory network linking the circadian clock with photoperiodic flowering.This review summarizes that regulatory network,focusing on the distinct roles of clock genes in long-day and short-day plants.We also discuss the strategies of clock gene mutations contributing to geographic variation in longday and short-day crops.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334020 and 11927810)the National Key Research and Development Program of China(Grant No.2022YFB3904001).
文摘We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.
基金Project supported by the Space Application System of China Manned Space Programthe Youth Innovation Promotion Association,CAS。
文摘This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic state preparation,microwave interrogation, and transition probability detection, are integrated into the cylindrical microwave cavity to achieve a high-performance and compact physics package for the space cold atom clock. We present the detailed design and ground-test results of the cold atom clock physics package in this article, which demonstrates a frequency stability of 1.2×10^(-12) τ^(-1/2) with a Ramsey linewidth of 12.5 Hz, and a better performance is predicted with a 1 Hz or a narrower Ramsey linewidth in microgravity environment. The miniaturized cold atom clock based on intracavity cooling has great potential for achieving space high-precision time-frequency reference in the future.
基金Startup Fund for scientific research,Fujian Medical University,Grant/Award Number:2020QH1039Joint Funds for the Innovation of Science and Technology,Fujian Province,Grant/Award Number:2020Y9114 and 2020Y9119。
文摘The rodent running-wheel recording apparatus is a reliable approach for studying cir-cadian rhythm.This study demonstrated how to construct a simple and intelligent running-wheel recording system.The running wheel was attached to the cage's base,whereas the Hall sensor was attached to the cage's cover.Then,the RJ25 adaptor relayed the running signal to the main control board.Finally,the main control board was connected to the USB port of the computer with the USB connection.Data were collected using the online-accessible,self-created software Magturning.Through Magturning,generated data were saved and exported in real time.Afterward,the device was validated by collecting data on the locomotor activities of mice under dif-ferent light conditions.In conclusion,this new device can record circadian activity of rodents.Our device is appropriate for interdisciplinary investigations related to biological clock research.
基金supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2019ZT08N291)the Science and Technology Program of Guangzhou,China(2023A04J0760)the Guangdong Basic and Applied Basic Research Foundation(2024A1515030058).
文摘As the body’s internal clock,the circadian rhythm regulates the energy expenditure,appetite,and sleep.There exists a close relationship between the host circadian rhythm and gut microbiota.In this work,a circadian disorder mouse model induced by constant darkness(CD)was constructed to investigate the regulating effects of capsaicin(CAP)on disturbances of metabolism homeostasis and gut microbiota in the respect of circadian rhythm-related mechanisms.Our results indicated that CAP reduced weight gain induced by circadian rhythm disorder in mice by inhibiting fat accumulation in liver and adipose tissue.The rhythmic expressions of circadian clock genes and lipid-metabolism related genes in liver were also recovered by CAP.Microbial study using 16S rRNA sequencing revealed that CAP modulated the gut microbiota richness,diversity and composition,and restored diurnal oscillations of gut microbes at the phylum and family level.These results indicated that CAP could alleviate CD-induced hepatic clock gene disruption and gut microbiota dysbiosis in mice,providing theoretical basis for CAP to be used as a muti-functional ingredient with great healthpromoting effects.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1402100)。
文摘Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.
基金Project supported by the National Natural Science Foundation of China (Grant No.12274045)。
文摘Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W.
文摘Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocksmounted on a rod uniformly moving parallel with the rod’s length cannot besynchronized, but clocks attached to a stationary rod can. He dismissed thisdiscrepancy by claiming simultaneity and clock synchronization were not commonbetween inertial frames, but this paper proves with both Galilean and Lorentztransformations that simultaneity and clock synchronization are preservedbetween inertial frames. His derivation means moving clocks can never besynchronized in a “resting” inertial frame. Ultraprecise atomic clocks intimekeeping labs daily contradict his results. No algebraic error occurred inEinstein’s derivations. The two cases of clocksattached to a rod reveal three major conflicts with the currentsecond postulate. The net velocity between a photon source and detector plusthe “universal” velocity c is mathematically equivalent toEinstein’s clock synchronization method. As the ultraprecise timekeepingcommunity daily synchronizes atomic clocks on the moving Earth withultraprecise time uncertainty well below Einstein’s lowest limit ofsynchronization, the theoretical resolution of the apparent conflict isaccomplished by expanding the second relativity postulate to incorporate thenet velocity between the photon source and detector with the emitted velocity c as components of the total velocity c. This means the magnitudeof the total photon velocity can exceed the speed limit (299792458 m/s) set by the standard velocity c. .