In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimizati...In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.展开更多
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied...In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.展开更多
The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemi...The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.展开更多
Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to ful...Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to fulfill a common mission are challenged by the ever-changing battlefield and hence requires a cross-organizational process management that produces an autonomous, flexible and adaptable architecture for collaborative process evolution. The traditional business process collaboration pattern is based on the predefined "public-view" perspective and cannot meet the requirement of the joint task operations. This paper proposes a flexible visibility control mechanism and a dynamic collaboration framework for modeling and generating collaborative processes. The mechanism allows collaborators to define a set of visibility rules to generate different views of the private processes for different collaborations, which gives a great flexibility for the collaboration initiator to decide on an appropriate collaboration pattern. The framework supports collaborators to dynamically and recursively add a new process or even a new organization to an existing collaboration. Moreover, a formal representation of the processes and a set of generation algorithms are provided to consolidate the proposed theory.展开更多
The general mixed quasi variational inequality containing a nonlinear term φ is a useful and an important generalization of variational inequalities. The projection method can not be applied to solve this problem due...The general mixed quasi variational inequality containing a nonlinear term φ is a useful and an important generalization of variational inequalities. The projection method can not be applied to solve this problem due to the presence of nonlinear term. It is well known that the variational inequalities involving the nonlinear term φ are equivalent to the fixed point problems and resolvent equations. In this article, the authors use these alternative equivalent formulations to suggest and analyze a new self-adaptive iterative method for solving general mixed quasi variational inequalities. Global convergence of the new method is proved. An example is given to illustrate the efficiency of the proposed method.展开更多
For some large-scale engineering structures in operating conditions, modal param- eters estimation must base itself on response-only data. This problem has received a considerable amount of attention in the past few y...For some large-scale engineering structures in operating conditions, modal param- eters estimation must base itself on response-only data. This problem has received a considerable amount of attention in the past few years. It is well known that the cross-correlation function between the measured responses is a sum of complex exponential functions of the same form as the impulse response function of the original system. So this paper presents a time-domain operating modal identifcation global scheme and a frequency-domain scheme from output-only by cou- pling the cross-correlation function with conventional modal parameter estimation. The outlined techniques are applied to an airplane model to estimate modal parameters from response-only data.展开更多
Conventional modal parameter identifications are usually based on frequencyresponse functions, which require measurements of both the input force and the resulting response.However, in many cases, only response data a...Conventional modal parameter identifications are usually based on frequencyresponse functions, which require measurements of both the input force and the resulting response.However, in many cases, only response data are available while the actual excitations (such aswind/wave load) are not measurable. Modal parameters estimation must base itself on response-onlydata. Over the past years, many time-domain modal parameter identification techniques fromoutput-only are proposed. A poly-reference frequency-domain modal identification scheme onresponse-only is presented. It is based on coupling the cross-correlation theory with conventionalfrequency-domain modal parameter extraction. An experiment using an airplane model is performed toverify the proposed method.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50679011)
文摘In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.
基金Projects(61203020,61403190)supported by the National Natural Science Foundation of ChinaProject(BK20141461)supported by the Jiangsu Province Natural Science Foundation,China
文摘In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.
基金Supported by the Shanghai Second Polytechnic University Key Discipline Construction-Control Theory & Control Engineering(No.XXKPY1609)the National Natural Science Foundation of China(61422303)+1 种基金Shanghai Talent Development Funding(H200-2R-15111)2017 Shanghai Second Polytechnic University Cultivation Research Program of Young Teachers(02)
文摘The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.
基金supported by the National Natural Science Foundation of China(61273210)the National High Technology Research and Development Program of China(863 Program)(2007AA01Z126)
文摘Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to fulfill a common mission are challenged by the ever-changing battlefield and hence requires a cross-organizational process management that produces an autonomous, flexible and adaptable architecture for collaborative process evolution. The traditional business process collaboration pattern is based on the predefined "public-view" perspective and cannot meet the requirement of the joint task operations. This paper proposes a flexible visibility control mechanism and a dynamic collaboration framework for modeling and generating collaborative processes. The mechanism allows collaborators to define a set of visibility rules to generate different views of the private processes for different collaborations, which gives a great flexibility for the collaboration initiator to decide on an appropriate collaboration pattern. The framework supports collaborators to dynamically and recursively add a new process or even a new organization to an existing collaboration. Moreover, a formal representation of the processes and a set of generation algorithms are provided to consolidate the proposed theory.
基金This research was supported by MOEC (20060284001)NSFC (70371019 and 10571083)supported partly by NSFC 70571034
文摘The general mixed quasi variational inequality containing a nonlinear term φ is a useful and an important generalization of variational inequalities. The projection method can not be applied to solve this problem due to the presence of nonlinear term. It is well known that the variational inequalities involving the nonlinear term φ are equivalent to the fixed point problems and resolvent equations. In this article, the authors use these alternative equivalent formulations to suggest and analyze a new self-adaptive iterative method for solving general mixed quasi variational inequalities. Global convergence of the new method is proved. An example is given to illustrate the efficiency of the proposed method.
基金Project supported by the National Natural Science Foundation of China(No.50205012),Aeronautics Foundation(No.01152059)and Civil Aviation Foundation(No.1007-272001).
文摘For some large-scale engineering structures in operating conditions, modal param- eters estimation must base itself on response-only data. This problem has received a considerable amount of attention in the past few years. It is well known that the cross-correlation function between the measured responses is a sum of complex exponential functions of the same form as the impulse response function of the original system. So this paper presents a time-domain operating modal identifcation global scheme and a frequency-domain scheme from output-only by cou- pling the cross-correlation function with conventional modal parameter estimation. The outlined techniques are applied to an airplane model to estimate modal parameters from response-only data.
基金This project is supported by Aeronautics Foundation (No. 1152059), Civil Aviation Foundation (No.1007-272) the 9-th Five Plan of the Aeronautical Industrial Corporation (No.62.2.2.1), China.
文摘Conventional modal parameter identifications are usually based on frequencyresponse functions, which require measurements of both the input force and the resulting response.However, in many cases, only response data are available while the actual excitations (such aswind/wave load) are not measurable. Modal parameters estimation must base itself on response-onlydata. Over the past years, many time-domain modal parameter identification techniques fromoutput-only are proposed. A poly-reference frequency-domain modal identification scheme onresponse-only is presented. It is based on coupling the cross-correlation theory with conventionalfrequency-domain modal parameter extraction. An experiment using an airplane model is performed toverify the proposed method.