Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconst...Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection.展开更多
With the rapid development of the mobile communication and the Internet,the previous web anomaly detectionand identificationmodels were built relying on security experts’empirical knowledge and attack features.Althou...With the rapid development of the mobile communication and the Internet,the previous web anomaly detectionand identificationmodels were built relying on security experts’empirical knowledge and attack features.Althoughthis approach can achieve higher detection performance,it requires huge human labor and resources to maintainthe feature library.In contrast,semantic feature engineering can dynamically discover new semantic featuresand optimize feature selection by automatically analyzing the semantic information contained in the data itself,thus reducing dependence on prior knowledge.However,current semantic features still have the problem ofsemantic expression singularity,as they are extracted from a single semantic mode such as word segmentation,character segmentation,or arbitrary semantic feature extraction.This paper extracts features of web requestsfrom dual semantic granularity,and proposes a semantic feature fusion method to solve the above problems.Themethod first preprocesses web requests,and extracts word-level and character-level semantic features of URLs viaconvolutional neural network(CNN),respectively.By constructing three loss functions to reduce losses betweenfeatures,labels and categories.Experiments on the HTTP CSIC 2010,Malicious URLs and HttpParams datasetsverify the proposedmethod.Results show that compared withmachine learning,deep learningmethods and BERTmodel,the proposed method has better detection performance.And it achieved the best detection rate of 99.16%in the dataset HttpParams.展开更多
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot...The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.展开更多
Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hier...Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network(HMAC-Net),which effectively combines global features and local features.The network framework consists of three parallel layers:The global feature extraction layer,the local feature extraction layer,and the multi-scale feature fusion layer.A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy.In the local feature extraction layer,a bilateral local attention mechanism is introduced to improve the extraction of relevant information between adjacent slices.In the multi-scale feature fusion layer,a channel fusion block combining convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient disappearance and network degradation and improve feature representation capability.The double-branch iterative multi-scale classification block is used to improve the classification performance.On the brain glioma risk grading dataset,the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators.On the dataset of skin cancer classification,the generalization experiment results show that the proposed HMAC-Net has a good generalization effect.展开更多
The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prosta...The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation.展开更多
Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wa...Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.展开更多
In the multi-radar networking system,aiming at the problem of locating long-distance targets synergistically with difficulty and low accuracy,a dual-station joint positioning method based on the target measurement err...In the multi-radar networking system,aiming at the problem of locating long-distance targets synergistically with difficulty and low accuracy,a dual-station joint positioning method based on the target measurement error feature complementarity is proposed.For dual-station joint positioning,by constructing the target positioning error distribution model and using the complementarity of spatial measurement errors of the same long-distance target,the area with high probability of target existence can be obtained.Then,based on the target distance information,the midpoint of the intersection between the target positioning sphere and the positioning tangent plane can be solved to acquire the target's optimal positioning result.The simulation demonstrates that this method greatly improves the positioning accuracy of target in azimuth direction.Compared with the traditional the dynamic weighted fusion(DWF)algorithm and the filter-based dynamic weighted fusion(FBDWF)algorithm,it not only effectively eliminates the influence of systematic error in the azimuth direction,but also has low computational complexity.Furthermore,for the application scenarios of multi-radar collaborative positioning and multi-sensor data compression filtering in centralized information fusion,it is recommended that using radar with higher ranging accuracy and the lengths of baseline between radars are 20–100 km.展开更多
With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve suffi...With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed.展开更多
The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregula...The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregular and multi-scale nature of food images.Addressing these complexities,our study introduces an advanced model that leverages multiple attention mechanisms and multi-stage local fusion,grounded in the ConvNeXt architecture.Our model employs hybrid attention(HA)mechanisms to pinpoint critical discriminative regions within images,substantially mitigating the influence of background noise.Furthermore,it introduces a multi-stage local fusion(MSLF)module,fostering long-distance dependencies between feature maps at varying stages.This approach facilitates the assimilation of complementary features across scales,significantly bolstering the model’s capacity for feature extraction.Furthermore,we constructed a dataset named Roushi60,which consists of 60 different categories of common meat dishes.Empirical evaluation of the ETH Food-101,ChineseFoodNet,and Roushi60 datasets reveals that our model achieves recognition accuracies of 91.12%,82.86%,and 92.50%,respectively.These figures not only mark an improvement of 1.04%,3.42%,and 1.36%over the foundational ConvNeXt network but also surpass the performance of most contemporary food image recognition methods.Such advancements underscore the efficacy of our proposed model in navigating the intricate landscape of food image recognition,setting a new benchmark for the field.展开更多
The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.Howeve...The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.However,these traces have become increasingly difficult to extract due to wide availability of various image processing algorithms.Convolutional Neural Networks(CNN)-based algorithms have demonstrated good discriminative capabilities for different brands and even different models of camera devices.However,their performances is not ideal in case of distinguishing between individual devices of the same model,because cameras of the same model typically use the same optical lens,image sensor,and image processing algorithms,that result in minimal overall differences.In this paper,we propose a camera forensics algorithm based on multi-scale feature fusion to address these issues.The proposed algorithm extracts different local features from feature maps of different scales and then fuses them to obtain a comprehensive feature representation.This representation is then fed into a subsequent camera fingerprint classification network.Building upon the Swin-T network,we utilize Transformer Blocks and Graph Convolutional Network(GCN)modules to fuse multi-scale features from different stages of the backbone network.Furthermore,we conduct experiments on established datasets to demonstrate the feasibility and effectiveness of the proposed approach.展开更多
This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ...This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.展开更多
Manhole cover defect recognition is of significant practical importance as it can accurately identify damaged or missing covers, enabling timely replacement and maintenance. Traditional manhole cover detection techniq...Manhole cover defect recognition is of significant practical importance as it can accurately identify damaged or missing covers, enabling timely replacement and maintenance. Traditional manhole cover detection techniques primarily focus on detecting the presence of covers rather than classifying the types of defects. However, manhole cover defects exhibit small inter-class feature differences and large intra-class feature variations, which makes their recognition challenging. To improve the classification of manhole cover defect types, we propose a Progressive Dual-Branch Feature Fusion Network (PDBFFN). The baseline backbone network adopts a multi-stage hierarchical architecture design using Res-Net50 as the visual feature extractor, from which both local and global information is obtained. Additionally, a Feature Enhancement Module (FEM) and a Fusion Module (FM) are introduced to enhance the network’s ability to learn critical features. Experimental results demonstrate that our model achieves a classification accuracy of 82.6% on a manhole cover defect dataset, outperforming several state-of-the-art fine-grained image classification models.展开更多
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
Most large-scale systems including self-adaptive systems utilize feature models(FMs)to represent their complex architectures and benefit from the reuse of commonalities and variability information.Self-adaptive system...Most large-scale systems including self-adaptive systems utilize feature models(FMs)to represent their complex architectures and benefit from the reuse of commonalities and variability information.Self-adaptive systems(SASs)are capable of reconfiguring themselves during the run time to satisfy the scenarios of the requisite contexts.However,reconfiguration of SASs corresponding to each adaptation of the system requires significant computational time and resources.The process of configuration reuse can be a better alternative to some contexts to reduce computational time,effort and error-prone.Nevertheless,systems’complexity can be reduced while the development process of systems by reusing elements or components.FMs are considered one of the new ways of reuse process that are able to introduce new opportunities for the reuse process beyond the conventional system components.While current FM-based modelling techniques represent,manage,and reuse elementary features to model SASs concepts,modeling and reusing configurations have not yet been considered.In this context,this study presents an extension to FMs by introducing and managing configuration features and their reuse process.Evaluation results demonstrate that reusing configuration features reduces the effort and time required by a reconfiguration process during the run time to meet the required scenario according to the current context.展开更多
By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Com...By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid.展开更多
In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the gl...In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the global and the local features are combined together. Moreover, the multiple kernel learning method is adopted. The global features and each kind of local feature are respectively associated with a kernel, and all these kernels are added together with different weights to obtain a mixed kernel for nonlinear mapping. In the reproducing kernel Hilbert space, different kinds of emotional features can be easily classified. In the experiments, the popular Berlin dataset is used, and the optimal parameters of the global and the local kernels are determined by cross-validation. After computing using multiple kernel learning, the weights of all the kernels are obtained, which shows that the formant and intensity features play a key role in speech emotion recognition. The classification results show that the recognition rate is 78. 74% by using the global kernel, and it is 81.10% by using the proposed method, which demonstrates the effectiveness of the proposed method.展开更多
In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision lev...In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision level fusion is proposed. Firstly, the minimal 3D space region of human action region is detected by combining frame difference method and Vi BE algorithm, and the three-dimensional histogram of oriented gradient(HOG3D) is extracted. At the same time, the characteristics of global descriptors based on frequency domain filtering(FDF) and the local descriptors based on spatial-temporal interest points(STIP) are extracted. Principal component analysis(PCA) is implemented to reduce the dimension of the gradient histogram and the global descriptor, and bag of words(BoW) model is applied to describe the local descriptors based on STIP. Finally, a linear support vector machine(SVM) is used to create a new decision level fusion classifier. Some experiments are done to verify the performance of the multi-features, and the results show that they have good representation ability and generalization ability. Otherwise, the proposed scheme obtains very competitive results on the well-known datasets in terms of mean average precision.展开更多
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected...A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.展开更多
Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this...Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this problem,this paper proposes to combine two ingredients:(i)Three features with functions of mutual complementation are adopted to describe the images,including pyramid histogram of words(PHOW),pyramid histogram of color(PHOC)and pyramid histogram of orientated gradients(PHOG).(ii)An adaptive feature-weight adjusted image categorization algorithm based on the SVM and the decision level fusion of multiple features are employed.Experiments are carried out on the Caltech101 database,which confirms the validity of the proposed approach.The experimental results show that the classification accuracy rate of the proposed method is improved by 7%-14%higher than that of the traditional BOW methods.With full utilization of global,local and spatial information,the algorithm is much more complete and flexible to describe the feature information of the image through the multi-feature fusion and the pyramid structure composed by image spatial multi-resolution decomposition.Significant improvements to the classification accuracy are achieved as the result.展开更多
To improve the accuracy and robustness of rolling bearing fault diagnosis under complex conditions, a novel method based on multi-view feature fusion is proposed. Firstly, multi-view features from perspectives of the ...To improve the accuracy and robustness of rolling bearing fault diagnosis under complex conditions, a novel method based on multi-view feature fusion is proposed. Firstly, multi-view features from perspectives of the time domain, frequency domain and time-frequency domain are extracted through the Fourier transform, Hilbert transform and empirical mode decomposition (EMD).Then, the random forest model (RF) is applied to select features which are highly correlated with the bearing operating state. Subsequently, the selected features are fused via the autoencoder (AE) to further reduce the redundancy. Finally, the effectiveness of the fused features is evaluated by the support vector machine (SVM). The experimental results indicate that the proposed method based on the multi-view feature fusion can effectively reflect the difference in the state of the rolling bearing, and improve the accuracy of fault diagnosis.展开更多
基金supported in part by the National Natural Science Foundation of China(Grants 62376172,62006163,62376043)in part by the National Postdoctoral Program for Innovative Talents(Grant BX20200226)in part by Sichuan Science and Technology Planning Project(Grants 2022YFSY0047,2022YFQ0014,2023ZYD0143,2022YFH0021,2023YFQ0020,24QYCX0354,24NSFTD0025).
文摘Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection.
基金a grant from the National Natural Science Foundation of China(Nos.11905239,12005248 and 12105303).
文摘With the rapid development of the mobile communication and the Internet,the previous web anomaly detectionand identificationmodels were built relying on security experts’empirical knowledge and attack features.Althoughthis approach can achieve higher detection performance,it requires huge human labor and resources to maintainthe feature library.In contrast,semantic feature engineering can dynamically discover new semantic featuresand optimize feature selection by automatically analyzing the semantic information contained in the data itself,thus reducing dependence on prior knowledge.However,current semantic features still have the problem ofsemantic expression singularity,as they are extracted from a single semantic mode such as word segmentation,character segmentation,or arbitrary semantic feature extraction.This paper extracts features of web requestsfrom dual semantic granularity,and proposes a semantic feature fusion method to solve the above problems.Themethod first preprocesses web requests,and extracts word-level and character-level semantic features of URLs viaconvolutional neural network(CNN),respectively.By constructing three loss functions to reduce losses betweenfeatures,labels and categories.Experiments on the HTTP CSIC 2010,Malicious URLs and HttpParams datasetsverify the proposedmethod.Results show that compared withmachine learning,deep learningmethods and BERTmodel,the proposed method has better detection performance.And it achieved the best detection rate of 99.16%in the dataset HttpParams.
基金This project is supported by the National Natural Science Foundation of China(NSFC)(No.61902158).
文摘The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
基金Major Program of National Natural Science Foundation of China(NSFC12292980,NSFC12292984)National Key R&D Program of China(2023YFA1009000,2023YFA1009004,2020YFA0712203,2020YFA0712201)+2 种基金Major Program of National Natural Science Foundation of China(NSFC12031016)Beijing Natural Science Foundation(BNSFZ210003)Department of Science,Technology and Information of the Ministry of Education(8091B042240).
文摘Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network(HMAC-Net),which effectively combines global features and local features.The network framework consists of three parallel layers:The global feature extraction layer,the local feature extraction layer,and the multi-scale feature fusion layer.A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy.In the local feature extraction layer,a bilateral local attention mechanism is introduced to improve the extraction of relevant information between adjacent slices.In the multi-scale feature fusion layer,a channel fusion block combining convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient disappearance and network degradation and improve feature representation capability.The double-branch iterative multi-scale classification block is used to improve the classification performance.On the brain glioma risk grading dataset,the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators.On the dataset of skin cancer classification,the generalization experiment results show that the proposed HMAC-Net has a good generalization effect.
基金This work was supported in part by the National Natural Science Foundation of China(Grant#:82260362)in part by the National Key R&D Program of China(Grant#:2021ZD0111000)+1 种基金in part by the Key R&D Project of Hainan Province(Grant#:ZDYF2021SHFZ243)in part by the Major Science and Technology Project of Haikou(Grant#:2020-009).
文摘The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation.
文摘Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.
文摘In the multi-radar networking system,aiming at the problem of locating long-distance targets synergistically with difficulty and low accuracy,a dual-station joint positioning method based on the target measurement error feature complementarity is proposed.For dual-station joint positioning,by constructing the target positioning error distribution model and using the complementarity of spatial measurement errors of the same long-distance target,the area with high probability of target existence can be obtained.Then,based on the target distance information,the midpoint of the intersection between the target positioning sphere and the positioning tangent plane can be solved to acquire the target's optimal positioning result.The simulation demonstrates that this method greatly improves the positioning accuracy of target in azimuth direction.Compared with the traditional the dynamic weighted fusion(DWF)algorithm and the filter-based dynamic weighted fusion(FBDWF)algorithm,it not only effectively eliminates the influence of systematic error in the azimuth direction,but also has low computational complexity.Furthermore,for the application scenarios of multi-radar collaborative positioning and multi-sensor data compression filtering in centralized information fusion,it is recommended that using radar with higher ranging accuracy and the lengths of baseline between radars are 20–100 km.
文摘With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed.
基金The support of this research was by Hubei Provincial Natural Science Foundation(2022CFB449)Science Research Foundation of Education Department of Hubei Province(B2020061),are gratefully acknowledged.
文摘The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregular and multi-scale nature of food images.Addressing these complexities,our study introduces an advanced model that leverages multiple attention mechanisms and multi-stage local fusion,grounded in the ConvNeXt architecture.Our model employs hybrid attention(HA)mechanisms to pinpoint critical discriminative regions within images,substantially mitigating the influence of background noise.Furthermore,it introduces a multi-stage local fusion(MSLF)module,fostering long-distance dependencies between feature maps at varying stages.This approach facilitates the assimilation of complementary features across scales,significantly bolstering the model’s capacity for feature extraction.Furthermore,we constructed a dataset named Roushi60,which consists of 60 different categories of common meat dishes.Empirical evaluation of the ETH Food-101,ChineseFoodNet,and Roushi60 datasets reveals that our model achieves recognition accuracies of 91.12%,82.86%,and 92.50%,respectively.These figures not only mark an improvement of 1.04%,3.42%,and 1.36%over the foundational ConvNeXt network but also surpass the performance of most contemporary food image recognition methods.Such advancements underscore the efficacy of our proposed model in navigating the intricate landscape of food image recognition,setting a new benchmark for the field.
基金This work was funded by the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.However,these traces have become increasingly difficult to extract due to wide availability of various image processing algorithms.Convolutional Neural Networks(CNN)-based algorithms have demonstrated good discriminative capabilities for different brands and even different models of camera devices.However,their performances is not ideal in case of distinguishing between individual devices of the same model,because cameras of the same model typically use the same optical lens,image sensor,and image processing algorithms,that result in minimal overall differences.In this paper,we propose a camera forensics algorithm based on multi-scale feature fusion to address these issues.The proposed algorithm extracts different local features from feature maps of different scales and then fuses them to obtain a comprehensive feature representation.This representation is then fed into a subsequent camera fingerprint classification network.Building upon the Swin-T network,we utilize Transformer Blocks and Graph Convolutional Network(GCN)modules to fuse multi-scale features from different stages of the backbone network.Furthermore,we conduct experiments on established datasets to demonstrate the feasibility and effectiveness of the proposed approach.
基金Sponsored by the Fundamental Research Funds for the Central Universities of China(Grant No.PA2023IISL0098)the Hefei Municipal Natural Science Foundation(Grant No.202201)+1 种基金the National Natural Science Foundation of China(Grant No.62071164)the Open Fund of Information Materials and Intelligent Sensing Laboratory of Anhui Province(Anhui University)(Grant No.IMIS202214 and IMIS202102)。
文摘This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.
文摘Manhole cover defect recognition is of significant practical importance as it can accurately identify damaged or missing covers, enabling timely replacement and maintenance. Traditional manhole cover detection techniques primarily focus on detecting the presence of covers rather than classifying the types of defects. However, manhole cover defects exhibit small inter-class feature differences and large intra-class feature variations, which makes their recognition challenging. To improve the classification of manhole cover defect types, we propose a Progressive Dual-Branch Feature Fusion Network (PDBFFN). The baseline backbone network adopts a multi-stage hierarchical architecture design using Res-Net50 as the visual feature extractor, from which both local and global information is obtained. Additionally, a Feature Enhancement Module (FEM) and a Fusion Module (FM) are introduced to enhance the network’s ability to learn critical features. Experimental results demonstrate that our model achieves a classification accuracy of 82.6% on a manhole cover defect dataset, outperforming several state-of-the-art fine-grained image classification models.
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
文摘Most large-scale systems including self-adaptive systems utilize feature models(FMs)to represent their complex architectures and benefit from the reuse of commonalities and variability information.Self-adaptive systems(SASs)are capable of reconfiguring themselves during the run time to satisfy the scenarios of the requisite contexts.However,reconfiguration of SASs corresponding to each adaptation of the system requires significant computational time and resources.The process of configuration reuse can be a better alternative to some contexts to reduce computational time,effort and error-prone.Nevertheless,systems’complexity can be reduced while the development process of systems by reusing elements or components.FMs are considered one of the new ways of reuse process that are able to introduce new opportunities for the reuse process beyond the conventional system components.While current FM-based modelling techniques represent,manage,and reuse elementary features to model SASs concepts,modeling and reusing configurations have not yet been considered.In this context,this study presents an extension to FMs by introducing and managing configuration features and their reuse process.Evaluation results demonstrate that reusing configuration features reduces the effort and time required by a reconfiguration process during the run time to meet the required scenario according to the current context.
文摘By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid.
基金The National Natural Science Foundation of China(No.61231002,61273266)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the global and the local features are combined together. Moreover, the multiple kernel learning method is adopted. The global features and each kind of local feature are respectively associated with a kernel, and all these kernels are added together with different weights to obtain a mixed kernel for nonlinear mapping. In the reproducing kernel Hilbert space, different kinds of emotional features can be easily classified. In the experiments, the popular Berlin dataset is used, and the optimal parameters of the global and the local kernels are determined by cross-validation. After computing using multiple kernel learning, the weights of all the kernels are obtained, which shows that the formant and intensity features play a key role in speech emotion recognition. The classification results show that the recognition rate is 78. 74% by using the global kernel, and it is 81.10% by using the proposed method, which demonstrates the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China under Grant No. 61503424the Research Project by The State Ethnic Affairs Commission under Grant No. 14ZYZ017+2 种基金the Jiangsu Future Networks Innovation Institute-Prospective Research Project on Future Networks under Grant No. BY2013095-2-14the Fundamental Research Funds for the Central Universities No. FRF-TP-14-046A2the first-class discipline construction transitional funds of Minzu University of China
文摘In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision level fusion is proposed. Firstly, the minimal 3D space region of human action region is detected by combining frame difference method and Vi BE algorithm, and the three-dimensional histogram of oriented gradient(HOG3D) is extracted. At the same time, the characteristics of global descriptors based on frequency domain filtering(FDF) and the local descriptors based on spatial-temporal interest points(STIP) are extracted. Principal component analysis(PCA) is implemented to reduce the dimension of the gradient histogram and the global descriptor, and bag of words(BoW) model is applied to describe the local descriptors based on STIP. Finally, a linear support vector machine(SVM) is used to create a new decision level fusion classifier. Some experiments are done to verify the performance of the multi-features, and the results show that they have good representation ability and generalization ability. Otherwise, the proposed scheme obtains very competitive results on the well-known datasets in terms of mean average precision.
基金supported partly by the National Basic Research Program of China (2005CB724303)the National Natural Science Foundation of China (60671062) Shanghai Leading Academic Discipline Project (B112).
文摘A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.
基金Supported by Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61321002)Projects of Major International(Regional)Jiont Research Program NSFC(61120106010)+1 种基金Beijing Education Committee Cooperation Building Foundation ProjectProgram for Changjiang Scholars and Innovative Research Team in University(IRT1208)
文摘Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this problem,this paper proposes to combine two ingredients:(i)Three features with functions of mutual complementation are adopted to describe the images,including pyramid histogram of words(PHOW),pyramid histogram of color(PHOC)and pyramid histogram of orientated gradients(PHOG).(ii)An adaptive feature-weight adjusted image categorization algorithm based on the SVM and the decision level fusion of multiple features are employed.Experiments are carried out on the Caltech101 database,which confirms the validity of the proposed approach.The experimental results show that the classification accuracy rate of the proposed method is improved by 7%-14%higher than that of the traditional BOW methods.With full utilization of global,local and spatial information,the algorithm is much more complete and flexible to describe the feature information of the image through the multi-feature fusion and the pyramid structure composed by image spatial multi-resolution decomposition.Significant improvements to the classification accuracy are achieved as the result.
基金The National Natural Science Foundation of China(No.51875100)
文摘To improve the accuracy and robustness of rolling bearing fault diagnosis under complex conditions, a novel method based on multi-view feature fusion is proposed. Firstly, multi-view features from perspectives of the time domain, frequency domain and time-frequency domain are extracted through the Fourier transform, Hilbert transform and empirical mode decomposition (EMD).Then, the random forest model (RF) is applied to select features which are highly correlated with the bearing operating state. Subsequently, the selected features are fused via the autoencoder (AE) to further reduce the redundancy. Finally, the effectiveness of the fused features is evaluated by the support vector machine (SVM). The experimental results indicate that the proposed method based on the multi-view feature fusion can effectively reflect the difference in the state of the rolling bearing, and improve the accuracy of fault diagnosis.