期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
1
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 grey wolf optimization (gwo) Metaheuristic Algorithm optimization Problems Agents’ Positions Leader Wolves optimal Fitness Values optimization Challenges
下载PDF
VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity
2
作者 Junqiang Jiang Zhifang Sun +3 位作者 Xiong Jiang Shengjie Jin Yinli Jiang Bo Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1617-1644,共28页
The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple pr... The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple principle and few parameters setting,GWO bears drawbacks such as low solution accuracy and slow convergence speed.A few recent advanced GWOs are proposed to try to overcome these disadvantages.However,they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence.To solve the abovementioned issues,a high-accuracy variable grey wolf optimizer(VGWO)with low time complexity is proposed in this study.VGWO first uses the symmetrical wolf strategy to generate an initial population of individuals to lay the foundation for the global seek of the algorithm,and then inspired by the simulated annealing algorithm and the differential evolution algorithm,a mutation operation for generating a new mutant individual is performed on three wolves which are randomly selected in the current wolf individuals while after each iteration.A vectorized Manhattan distance calculation method is specifically designed to evaluate the probability of selecting the mutant individual based on its status in the current wolf population for the purpose of dynamically balancing global search and fast convergence capability of VGWO.A series of experiments are conducted on 19 benchmark functions from CEC2014 and CEC2020 and three real-world engineering cases.For 19 benchmark functions,VGWO’s optimization results place first in 80%of comparisons to the state-of-art GWOs and the CEC2020 competition winner.A further evaluation based on the Friedman test,VGWO also outperforms all other algorithms statistically in terms of robustness with a better average ranking value. 展开更多
关键词 Intelligence optimization algorithm grey wolf optimizer(gwo) manhattan distance symmetric coordinates
下载PDF
Grey Wolf Optimizer to Real Power Dispatch with Non-Linear Constraints
3
作者 G.R.Venkatakrishnan R.Rengaraj S.Salivahanan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第4期25-45,共21页
A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimizati... A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimization problem which reduces the total cost in generating real power without violating the constraints.Conventional methods can solve the ELD problem with good solution quality with assumptions assigned to fuel cost curves without which these methods lead to suboptimal or infeasible solutions.The behavior of grey wolves which is mimicked in the GWO algorithm are leadership hierarchy and hunting mechanism.The leadership hierarchy is simulated using four types of grey wolves.In addition,searching,encircling and attacking of prey are the social behaviors implemented in the hunting mechanism.The GWO algorithm has been applied to solve convex RPED problems considering the all possible constraints.The results obtained from GWO algorithm are compared with other state-ofthe-art algorithms available in the recent literatures.It is found that the GWO algorithm is able to provide better solution quality in terms of cost,convergence and robustness for the considered ELD problems. 展开更多
关键词 grey wolf optimization(gwo) constraints power generation DISPATCH EVOLUTIONARY computation computational COMPLEXITY algorithms
下载PDF
Prediction of Backfill Strength Based on Support Vector Regression Improved by Grey Wolf Optimization
4
作者 张博 李克庆 +2 位作者 胡亚飞 吉坤 韩斌 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第5期686-694,共9页
In order to predict backfill strength rapidly with high accuracy and provide a new technical support for digitization and intelligentization of mine,a support vector regression(SVR)model improved by grey wolf optimiza... In order to predict backfill strength rapidly with high accuracy and provide a new technical support for digitization and intelligentization of mine,a support vector regression(SVR)model improved by grey wolf optimization(GWO),GWO-SVR model,is established.First,GWO is used to optimize penalty term and kernel function parameter in SVR model with high accuracy based on the experimental data of uniaxial compressive strength of filling body.Subsequently,a prediction model which uses the best two parameters of best c and best g is established with the slurry density,cement dosage,ratio of artificial aggregate to tailings,and curing time taken as input factors,and uniaxial compressive strength of backfill as the output factor.The root mean square error of this GWO-SVR model in predicting backfill strength is 0.143 and the coefficient of determination is 0.983,which means that the predictive effect of this model is accurate and reliable.Compared with the original SVR model without the optimization of GWO and particle swam optimization(PSO)-SVR model,the performance of GWO-SVR model is greatly promoted.The establishment of GWO-SVR model provides a new tool for predicting backfill strength scientifically. 展开更多
关键词 underground mining backfill strength prediction model grey wolf optimization(gwo) support vector regression(SVR)
原文传递
基于灰狼-鸟群算法的特征权重优化方法
5
作者 严爱军 严晶 《北京工业大学学报》 CAS CSCD 北大核心 2023年第10期1088-1098,共11页
针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;... 针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;其次,将改进后的GWO算法位置更新策略融入BSA的觅食行为中,得到一种新的局部搜索策略;然后,将BSA的警觉行为与飞行行为用作混合算法的全局搜索平衡策略,从而得到一种收敛的灰狼-鸟群算法(grey wolf and bird swarm algorithm, GWBSA),通过GWBSA的迭代寻优可获得各特征的权重值。利用标准测试函数和标准分类数据集进行了对比实验,与遗传算法、蚁狮算法等方法相比,GWBSA具有较快的收敛速度且不易陷入局部最优,可以提高模式分类问题的求解质量。 展开更多
关键词 特征权重 灰狼优化(grey wolf optimizer gwo)算法 鸟群算法(bird swarm algorithm BSA) 混合算法 问题求解 模式分类
下载PDF
Bio-inspired Hybrid Feature Selection Model for Intrusion Detection
6
作者 Adel Hamdan Mohammad Tariq Alwada’n +2 位作者 Omar Almomani Sami Smadi Nidhal ElOmari 《Computers, Materials & Continua》 SCIE EI 2022年第10期133-150,共18页
Intrusion detection is a serious and complex problem.Undoubtedly due to a large number of attacks around the world,the concept of intrusion detection has become very important.This research proposes a multilayer bioin... Intrusion detection is a serious and complex problem.Undoubtedly due to a large number of attacks around the world,the concept of intrusion detection has become very important.This research proposes a multilayer bioinspired feature selection model for intrusion detection using an optimized genetic algorithm.Furthermore,the proposed multilayer model consists of two layers(layers 1 and 2).At layer 1,three algorithms are used for the feature selection.The algorithms used are Particle Swarm Optimization(PSO),Grey Wolf Optimization(GWO),and Firefly Optimization Algorithm(FFA).At the end of layer 1,a priority value will be assigned for each feature set.At layer 2 of the proposed model,the Optimized Genetic Algorithm(GA)is used to select one feature set based on the priority value.Modifications are done on standard GA to perform optimization and to fit the proposed model.The Optimized GA is used in the training phase to assign a priority value for each feature set.Also,the priority values are categorized into three categories:high,medium,and low.Besides,the Optimized GA is used in the testing phase to select a feature set based on its priority.The feature set with a high priority will be given a high priority to be selected.At the end of phase 2,an update for feature set priority may occur based on the selected features priority and the calculated F-Measures.The proposed model can learn and modify feature sets priority,which will be reflected in selecting features.For evaluation purposes,two well-known datasets are used in these experiments.The first dataset is UNSW-NB15,the other dataset is the NSL-KDD.Several evaluation criteria are used,such as precision,recall,and F-Measure.The experiments in this research suggest that the proposed model has a powerful and promising mechanism for the intrusion detection system. 展开更多
关键词 Intrusion detection Machine learning optimized Genetic Algorithm(GA) Particle Swarm optimization algorithms(PSO) grey wolf optimization algorithms(gwo) FireFly optimization Algorithms(FFA) Genetic Algorithm(GA)
下载PDF
Calculation of Available Transfer Capability Using Hybrid Chaotic Selfish Herd Optimizer and 24 Hours RES-thermal Scheduling
7
作者 Kingsuk Majumdar Provas Kumar Roy Subrata Banerjee 《Chinese Journal of Electrical Engineering》 EI CSCD 2023年第4期54-72,共19页
As fossil fuel stocks are being depleted,alternative sources of energy must be explored.Consequently,traditional thermal power plants must coexist with renewable resources,such as wind,solar,and hydro units,and all-da... As fossil fuel stocks are being depleted,alternative sources of energy must be explored.Consequently,traditional thermal power plants must coexist with renewable resources,such as wind,solar,and hydro units,and all-day planning and operation techniques are necessary to safeguard nature while meeting the current demand.The fundamental components of contemporary power systems are the simultaneous decrease in generation costs and increase in the available transfer capacity(ATC)of current systems.Thermal units are linked to sources of renewable energy such as hydro,wind,and solar power,and are set up to run for 24 h.By contrast,new research reports that various chaotic maps are merged with various existing optimization methodologies to obtain better results than those without the inclusion of chaos.Chaos seems to increase the performance and convergence properties of existing optimization approaches.In this study,selfish animal tendencies,mathematically represented as selfish herd optimizers,were hybridized with chaotic phenomena and used to improve ATC and/or reduce generation costs,creating a multi-objective optimization problem.To evaluate the performance of the proposed hybridized optimization technique,an optimal power flow-based ATC was enforced under various hydro-thermal-solar-wind conditions,that is,the renewable energy source-thermal scheduling concept,on IEEE 9-bus,IEEE 39-bus,and Indian Northern Region Power Grid 246-bus test systems.The findings show that the proposed technique outperforms existing well-established optimization strategies. 展开更多
关键词 Available transfer capability(ATC) biogeography-based optimization(BBO) chaotic map chaotic selfish herd optimizer(CSHO) grey wolf optimizer(gwo) optimum power flow(OPF) power generation cost(PGC) renewable energy sources(RES) selfish herd optimizer(SHO)
原文传递
A Hybrid Model for Short-term PV Output Forecasting Based on PCA-GWO-GRNN 被引量:16
8
作者 Leijiao Ge Yiming Xian +2 位作者 Jun Yan Bo Wang Zhongguan Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第6期1268-1275,共8页
High-precision day-ahead short-term photovoltaic(PV)output forecasting is essential in PV integration to the smart distribution networks and multi-energy system,and provides the foundation for the security,stability,a... High-precision day-ahead short-term photovoltaic(PV)output forecasting is essential in PV integration to the smart distribution networks and multi-energy system,and provides the foundation for the security,stability,and economic operation of PV systems.This paper proposes a hybrid model based on principal component analysis,grey wolf optimization and generalized regression neural network(PCA-GWO-GRNN)for day-ahead short-term PV output forecasting,considering the features of multiple influencing factors and strong uncertainty.This paper first uses the PCA to reduce the dimension of meteorological features.Then,the high-precision day-ahead short-term PV output forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after dimension reduction,and the parameter of GRNN is optimized by using GWO,which has strong global searching ability and fast convergence.The proposed PCA-GWO-GRNN model effectively achieves a high precision in day-ahead shortterm PV output forecasting,which is demonstrated in a case study on a real PV plant in Jiangsu province,China.The results have validated the accuracy and applicability of the proposed model in real scenarios. 展开更多
关键词 Photovoltaic output forecasting principal component analysis(PCA) grey wolf optimization(gwo) generalized regression neural network(GRNN)
原文传递
Attacking Strategy of Multiple Unmanned Surface Vehicles with Improved GWO Algorithm Under Control of Unmanned Aerial Vehicles 被引量:1
9
作者 武星 蒲娟 谢少荣 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第2期201-207,共7页
Unmanned combat system is one of the important means to capture information superiority,carry out precision strike and accomplish special combat tasks in information war.Unmanned attack strategy plays a crucial role i... Unmanned combat system is one of the important means to capture information superiority,carry out precision strike and accomplish special combat tasks in information war.Unmanned attack strategy plays a crucial role in unmanned combat system,which has to ensure the attack by unmanned surface vehicles(USVs)from failure.To meet the challenge,we propose a task allocation algorithm called distributed auction mechanism task allocation with grey wolf optimization(DAGWO).The traditional grey wolf optimization(GWO)algorithm is improved with a distributed auction mechanism(DAM)to constrain the initialization of wolves,which improves the optimization process according to the actual situation.In addition,one unmanned aerial vehicle(UAV)is employed as the central control system to establish task allocation model and construct fitness function for the multiple constraints of USV attack problem.The proposed DAGWO algorithm can not only ensure the diversity of wolves,but also avoid the local optimum problem.Simulation results show that the proposed DAGWO algorithm can effectively solve the problem of attack task allocation among multiple USVs. 展开更多
关键词 unmanned surface vehicle(USV) ATTACK strategy grey wolf optimization(gwo) task ALLOCATION unmanned AERIAL vehicle(UAV)
原文传递
Adaptive coordination control strategy of renewable energy sources,hydrogen production unit,and fuel celi for frequency regulation of a hybrid distributed power system 被引量:4
10
作者 Hossam S.Salama Gaber Magdy +1 位作者 Abualkasim Bakeer Istvan Vokony 《Protection and Control of Modern Power Systems》 2022年第1期472-489,共18页
Owing to the significant number of hybrid generation systems(HGSs)containing various energy sources,coordina-tion between these sources plays a vital role in preserving frequency stability.In this paper,an adaptive co... Owing to the significant number of hybrid generation systems(HGSs)containing various energy sources,coordina-tion between these sources plays a vital role in preserving frequency stability.In this paper,an adaptive coordination control strategy for renewable energy sources(RESs),an aqua electrolyzer(AE)for hydrogen production,and a fuel cell(FC)-based energy storage system(ESS)is proposed to enhance the frequency stability of an HGS.In the proposed system,the excess energy from RESs is used to power electrolysis via an AE for hydrogen energy storage in FCs.The proposed method is based on a proportional-integral(Pl)controller,which is optimally designed using a grey wolf optimization(GWO)algorithm to estimate the surplus energy from RESs(ie,a proportion of total power generation of RESs:Kn).The studied HGS contains various types of generation systems including a diesel generator,wind tur-bines,photovoltaic(PV)systems,AE with FCs,and ESSs(e.g.,battery and flywheel).The proposed method varies Kn with varying frequency deviation values to obtain the best benefits from RESs,while damping the frequency fluc-tuations.The proposed method is validated by considering different loading conditions and comparing with other existing studies that consider Kn as a constant value.The simulation results demonstrate that the proposed method,which changes Kn value and subsequently stores the power extracted from the RESs in hydrogen energy storage according to frequency deviation changes,performs better than those that use constant Kn.The statistical analysis for frequency deviation of HGS with the proposed method has the best values and achieves large improvements for minimum,maximum,difference between maximum and minimum,mean,and standard deviation compared to the existing method. 展开更多
关键词 Adaptive coordination control method Renewable energy sources Fuel cell grey wolf optimization(gwo)algorithm Fraction factor(Kn) Frequency control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部