Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to...Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.展开更多
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr...BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.展开更多
As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems rema...As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems remain, including privacy breaches, imbalances in payment, and inequitable distribution.These shortcomings let devices reluctantly contribute relevant data to, or even refuse to participate in FL. Therefore, in the application of FL, an important but also challenging issue is to motivate as many participants as possible to provide high-quality data to FL. In this paper, we propose an incentive mechanism for FL based on the continuous zero-determinant(CZD) strategies from the perspective of game theory. We first model the interaction between the server and the devices during the FL process as a continuous iterative game. We then apply the CZD strategies for two players and then multiple players to optimize the social welfare of FL, for which we prove that the server can keep social welfare at a high and stable level. Subsequently, we design an incentive mechanism based on the CZD strategies to attract devices to contribute all of their high-accuracy data to FL.Finally, we perform simulations to demonstrate that our proposed CZD-based incentive mechanism can indeed generate high and stable social welfare in FL.展开更多
The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to d...The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to databit width. Reducing the data bit width will result in a loss of accuracy. Therefore, it is difficult to determinethe optimal bit width for different parts of the network with guaranteed accuracy. Mixed precision quantizationcan effectively reduce the amount of computation while keeping the model accuracy basically unchanged. In thispaper, a hardware-aware mixed precision quantization strategy optimal assignment algorithm adapted to low bitwidth is proposed, and reinforcement learning is used to automatically predict the mixed precision that meets theconstraints of hardware resources. In the state-space design, the standard deviation of weights is used to measurethe distribution difference of data, the execution speed feedback of simulated neural network accelerator inferenceis used as the environment to limit the action space of the agent, and the accuracy of the quantization model afterretraining is used as the reward function to guide the agent to carry out deep reinforcement learning training. Theexperimental results show that the proposed method obtains a suitable model layer-by-layer quantization strategyunder the condition that the computational resources are satisfied, and themodel accuracy is effectively improved.The proposed method has strong intelligence and certain universality and has strong application potential in thefield of mixed precision quantization and embedded neural network model deployment.展开更多
Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p...Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.展开更多
Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the ...Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the six-skill training strategies of“memory skill training,understanding skill training,application skill training,analytical skill training,evaluation skill training,creative skill training,”this paper aims to cultivate students’thinking profundity,logic,flexibility,sensitivity,criticality,and originality.It also promotes the real implementation of senior high school English deep reading that points to the cultivation of thinking quality in classroom teaching,and realizes the transformation from“conventional reading”to“deep reading”that reflects the core literacy of the discipline.展开更多
With the rapid development of virtual reality technology,it has been widely used in the field of education.It can promote the development of learning transfer,which is an effective method for learners to learn effecti...With the rapid development of virtual reality technology,it has been widely used in the field of education.It can promote the development of learning transfer,which is an effective method for learners to learn effectively.Therefore,this paper describes how to use virtual reality technology to achieve learning transfer in order to achieve teaching goals and improve learning efficiency.展开更多
To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-lea...To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference.展开更多
The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art ...The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.展开更多
The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle parti...The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.展开更多
Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attack...Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attackers to obtain complete network information in realistic network scenarios,Reinforcement Learning(RL)is a promising solution to discover the optimal penetration path under incomplete information about the target network.Existing RL-based methods are challenged by the sizeable discrete action space,which leads to difficulties in the convergence.Moreover,most methods still rely on experts’knowledge.To address these issues,this paper proposes a penetration path planning method based on reinforcement learning with episodic memory.First,the penetration testing problem is formally described in terms of reinforcement learning.To speed up the training process without specific prior knowledge,the proposed algorithm introduces episodic memory to store experienced advantageous strategies for the first time.Furthermore,the method offers an exploration strategy based on episodic memory to guide the agents in learning.The design makes full use of historical experience to achieve the purpose of reducing blind exploration and improving planning efficiency.Ultimately,comparison experiments are carried out with the existing RL-based methods.The results reveal that the proposed method has better convergence performance.The running time is reduced by more than 20%.展开更多
There is ample research on the vocabulary learning strategies used by EFL and ESL learners.Moreover,many researchers have attempted to discern the effectiveness of teaching vocabulary learning strategies instruction.H...There is ample research on the vocabulary learning strategies used by EFL and ESL learners.Moreover,many researchers have attempted to discern the effectiveness of teaching vocabulary learning strategies instruction.However,the impact of using metacognitive strategies along with vocabulary learning strategies on weak language learners has not been researched.The aim of this paper is to report on the effects of training low-achiever English as a foreign language learners with vocabulary learning strategies along with metacognitive strategies on vocabulary acquisition.Two B1 level groups of students were assigned as treatment and control groups at a university in Istanbul,Turkey.A Vocabulary Strategy Use Survey was given to identify the vocabulary strategy use of the subjects at the outset of the study.The treatment group was trained on vocabulary learning strategies combined with metacognitive strategy training.The control group studied the same words without any training.A vocabulary test was administered to both groups as a post-test and the results were compared.The findings of the Post-Test demonstrated that training weak language learners with vocabulary learning strategies along with metacognitive strategies has a positive impact on helping these learners increase their lexical knowledge,as the experimental group scored higher on the post-test compared to the control group.展开更多
Typically, relationship between well logs and lithofacies is complex, which leads to low accuracy of lithofacies identification. Machine learning (ML) methods are often applied to identify lithofacies using logs label...Typically, relationship between well logs and lithofacies is complex, which leads to low accuracy of lithofacies identification. Machine learning (ML) methods are often applied to identify lithofacies using logs labelled by rock cores. However, these methods have accuracy limits to some extent. To further improve their accuracies, practical and novel ensemble learning strategy and principles are proposed in this work, which allows geologists not familiar with ML to establish a good ML lithofacies identification model and help geologists familiar with ML further improve accuracy of lithofacies identification. The ensemble learning strategy combines ML methods as sub-classifiers to generate a comprehensive lithofacies identification model, which aims to reduce the variance errors in prediction. Each sub-classifier is trained by randomly sampled labelled data with random features. The novelty of this work lies in the ensemble principles making sub-classifiers just overfitting by algorithm parameter setting and sub-dataset sampling. The principles can help reduce the bias errors in the prediction. Two issues are discussed, videlicet (1) whether only a relatively simple single-classifier method can be as sub-classifiers and how to select proper ML methods as sub-classifiers;(2) whether different kinds of ML methods can be combined as sub-classifiers. If yes, how to determine a proper combination. In order to test the effectiveness of the ensemble strategy and principles for lithofacies identification, different kinds of machine learning algorithms are selected as sub-classifiers, including regular classifiers (LDA, NB, KNN, ID3 tree and CART), kernel method (SVM), and ensemble learning algorithms (RF, AdaBoost, XGBoost and LightGBM). In this work, the experiments used a published dataset of lithofacies from Daniudi gas field (DGF) in Ordes Basin, China. Based on a series of comparisons between ML algorithms and their corresponding ensemble models using the ensemble strategy and principles, conclusions are drawn: (1) not only decision tree but also other single-classifiers and ensemble-learning-classifiers can be used as sub-classifiers of homogeneous ensemble learning and the ensemble can improve the accuracy of the original classifiers;(2) the ensemble principles for the introduced homogeneous and heterogeneous ensemble strategy are effective in promoting ML in lithofacies identification;(3) in practice, heterogeneous ensemble is more suitable for building a more powerful lithofacies identification model, though it is complex.展开更多
EFL learners,who study English as a foreign language,often use different learning strategies in the learning process,with positive and negative results in their academic performance.Whether these learning strategies a...EFL learners,who study English as a foreign language,often use different learning strategies in the learning process,with positive and negative results in their academic performance.Whether these learning strategies are effective or not are questions to be explored.So,the author examined the relationship between Chinese EFL learners’test results and the use of motivated strategies for learning in English learning.Participants are students who have taken a high-stake standardized English proficiency test:IELTS(International English Language Testing System)with band score obtained.The results show that students’performance on high-stakes assessment is significantly associated with the use of motivated learning strategies like internal value in sharp contrast to test anxiety,which bears no relevance.Interviews are then implemented to candidates with different levels of English proficiency to figure out other related factors contributing to the test results.展开更多
Language teaching is not a one-way process.It interacts with language learning in an extremely intricate way.To improve language teaching,we need to take the process of language learning into account.This paper tries ...Language teaching is not a one-way process.It interacts with language learning in an extremely intricate way.To improve language teaching,we need to take the process of language learning into account.This paper tries to explore and understand what strategies the second language learners consciously or subconsciously adopt during their language learning process through the analyses of the linguistic errors they commit,so as to provide some insights into language teaching practice.展开更多
This study examined the potential effect of Inquiry-Based Learning Strategy(IBL)on the tenth-grade students’reading comprehension.Two groups and a quasi-experimental design were used.Two complete sections of grade 10...This study examined the potential effect of Inquiry-Based Learning Strategy(IBL)on the tenth-grade students’reading comprehension.Two groups and a quasi-experimental design were used.Two complete sections of grade 10 students from a public Secondary School for Girls in Irbid was randomly assigned by the researcher.The experimental group of 30 students was chosen first,and then the control group of 30 students.A pre-post reading comprehension test was designed before and after the study in order to fulfill its goals.Additionally,the experimental group was taught using the IBL strategy,whereas the control group was taught using the traditional teaching methods recommended in the tenth-grade Teacher’s Book.According to the findings,there were significant statistical differences favoring the experimental group over the control group.In light of the findings,the researcher recommended employing the IBL strategy to students with various levels and EFL skills.展开更多
Learning strategies are critical in the process of learning, knowing, and thinking. Without strategies, nobody can reach competence, to master certain knowledge and skills which makes him/her an independent learner. T...Learning strategies are critical in the process of learning, knowing, and thinking. Without strategies, nobody can reach competence, to master certain knowledge and skills which makes him/her an independent learner. The purose of this paper is trying to demonstrate an overview of leaning strategies based on the researches and studies have been done in the field with emphasis on strategy instruction for increasing reading comprehension and writing instruction.展开更多
According to schema theory resulting from the psycholinguistic model of reading,comprehending a text is an interactive process between the reader background knowledge and the text. This article first views the psychol...According to schema theory resulting from the psycholinguistic model of reading,comprehending a text is an interactive process between the reader background knowledge and the text. This article first views the psycholinguistic model of reading and research in learning strategies, then discusses the application of socioaffective,cognitive, metacognitive learning strategies in Chinese EFL learners’ reading comprehension.展开更多
基金the State Grid Liaoning Electric Power Supply Co.,Ltd.(Research on Scheduling Decision Technology Based on Interactive Reinforcement Learning for Adapting High Proportion of New Energy,No.2023YF-49).
文摘Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.
基金Supported by Science and Technology Support Program of Qiandongnan Prefecture,No.Qiandongnan Sci-Tech Support[2021]12Guizhou Province High-Level Innovative Talent Training Program,No.Qiannan Thousand Talents[2022]201701.
文摘BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.
基金partially supported by the National Natural Science Foundation of China (62173308)the Natural Science Foundation of Zhejiang Province of China (LR20F030001)the Jinhua Science and Technology Project (2022-1-042)。
文摘As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems remain, including privacy breaches, imbalances in payment, and inequitable distribution.These shortcomings let devices reluctantly contribute relevant data to, or even refuse to participate in FL. Therefore, in the application of FL, an important but also challenging issue is to motivate as many participants as possible to provide high-quality data to FL. In this paper, we propose an incentive mechanism for FL based on the continuous zero-determinant(CZD) strategies from the perspective of game theory. We first model the interaction between the server and the devices during the FL process as a continuous iterative game. We then apply the CZD strategies for two players and then multiple players to optimize the social welfare of FL, for which we prove that the server can keep social welfare at a high and stable level. Subsequently, we design an incentive mechanism based on the CZD strategies to attract devices to contribute all of their high-accuracy data to FL.Finally, we perform simulations to demonstrate that our proposed CZD-based incentive mechanism can indeed generate high and stable social welfare in FL.
文摘The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to databit width. Reducing the data bit width will result in a loss of accuracy. Therefore, it is difficult to determinethe optimal bit width for different parts of the network with guaranteed accuracy. Mixed precision quantizationcan effectively reduce the amount of computation while keeping the model accuracy basically unchanged. In thispaper, a hardware-aware mixed precision quantization strategy optimal assignment algorithm adapted to low bitwidth is proposed, and reinforcement learning is used to automatically predict the mixed precision that meets theconstraints of hardware resources. In the state-space design, the standard deviation of weights is used to measurethe distribution difference of data, the execution speed feedback of simulated neural network accelerator inferenceis used as the environment to limit the action space of the agent, and the accuracy of the quantization model afterretraining is used as the reward function to guide the agent to carry out deep reinforcement learning training. Theexperimental results show that the proposed method obtains a suitable model layer-by-layer quantization strategyunder the condition that the computational resources are satisfied, and themodel accuracy is effectively improved.The proposed method has strong intelligence and certain universality and has strong application potential in thefield of mixed precision quantization and embedded neural network model deployment.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51575528)the Science Foundation of China University of Petroleum,Beijing(No.2462022QEDX011).
文摘Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.
文摘Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the six-skill training strategies of“memory skill training,understanding skill training,application skill training,analytical skill training,evaluation skill training,creative skill training,”this paper aims to cultivate students’thinking profundity,logic,flexibility,sensitivity,criticality,and originality.It also promotes the real implementation of senior high school English deep reading that points to the cultivation of thinking quality in classroom teaching,and realizes the transformation from“conventional reading”to“deep reading”that reflects the core literacy of the discipline.
文摘With the rapid development of virtual reality technology,it has been widely used in the field of education.It can promote the development of learning transfer,which is an effective method for learners to learn effectively.Therefore,this paper describes how to use virtual reality technology to achieve learning transfer in order to achieve teaching goals and improve learning efficiency.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324).
文摘To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference.
基金Supported by National Natural Science Foundation of China (Grant Nos.52222215,52072051)Fundamental Research Funds for the Central Universities in China (Grant No.2023CDJXY-025)Chongqing Municipal Natural Science Foundation of China (Grant No.CSTB2023NSCQ-JQX0003)。
文摘The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.
基金supported in part by the Natural Science Foundation of Shandong Province of China(ZR202103040180)the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-004the Fundamental Research Funds for the Central Universities under Grant 20CX05019A.
文摘The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.
文摘Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attackers to obtain complete network information in realistic network scenarios,Reinforcement Learning(RL)is a promising solution to discover the optimal penetration path under incomplete information about the target network.Existing RL-based methods are challenged by the sizeable discrete action space,which leads to difficulties in the convergence.Moreover,most methods still rely on experts’knowledge.To address these issues,this paper proposes a penetration path planning method based on reinforcement learning with episodic memory.First,the penetration testing problem is formally described in terms of reinforcement learning.To speed up the training process without specific prior knowledge,the proposed algorithm introduces episodic memory to store experienced advantageous strategies for the first time.Furthermore,the method offers an exploration strategy based on episodic memory to guide the agents in learning.The design makes full use of historical experience to achieve the purpose of reducing blind exploration and improving planning efficiency.Ultimately,comparison experiments are carried out with the existing RL-based methods.The results reveal that the proposed method has better convergence performance.The running time is reduced by more than 20%.
文摘There is ample research on the vocabulary learning strategies used by EFL and ESL learners.Moreover,many researchers have attempted to discern the effectiveness of teaching vocabulary learning strategies instruction.However,the impact of using metacognitive strategies along with vocabulary learning strategies on weak language learners has not been researched.The aim of this paper is to report on the effects of training low-achiever English as a foreign language learners with vocabulary learning strategies along with metacognitive strategies on vocabulary acquisition.Two B1 level groups of students were assigned as treatment and control groups at a university in Istanbul,Turkey.A Vocabulary Strategy Use Survey was given to identify the vocabulary strategy use of the subjects at the outset of the study.The treatment group was trained on vocabulary learning strategies combined with metacognitive strategy training.The control group studied the same words without any training.A vocabulary test was administered to both groups as a post-test and the results were compared.The findings of the Post-Test demonstrated that training weak language learners with vocabulary learning strategies along with metacognitive strategies has a positive impact on helping these learners increase their lexical knowledge,as the experimental group scored higher on the post-test compared to the control group.
基金financially supported by the National Natural Science Foundation of China(Grant No.42002134)China Postdoctoral Science Foundation(Grant No.2021T140735)Science Foundation of China University of Petroleum,Beijing(Grant Nos.2462020XKJS02 and 2462020YXZZ004).
文摘Typically, relationship between well logs and lithofacies is complex, which leads to low accuracy of lithofacies identification. Machine learning (ML) methods are often applied to identify lithofacies using logs labelled by rock cores. However, these methods have accuracy limits to some extent. To further improve their accuracies, practical and novel ensemble learning strategy and principles are proposed in this work, which allows geologists not familiar with ML to establish a good ML lithofacies identification model and help geologists familiar with ML further improve accuracy of lithofacies identification. The ensemble learning strategy combines ML methods as sub-classifiers to generate a comprehensive lithofacies identification model, which aims to reduce the variance errors in prediction. Each sub-classifier is trained by randomly sampled labelled data with random features. The novelty of this work lies in the ensemble principles making sub-classifiers just overfitting by algorithm parameter setting and sub-dataset sampling. The principles can help reduce the bias errors in the prediction. Two issues are discussed, videlicet (1) whether only a relatively simple single-classifier method can be as sub-classifiers and how to select proper ML methods as sub-classifiers;(2) whether different kinds of ML methods can be combined as sub-classifiers. If yes, how to determine a proper combination. In order to test the effectiveness of the ensemble strategy and principles for lithofacies identification, different kinds of machine learning algorithms are selected as sub-classifiers, including regular classifiers (LDA, NB, KNN, ID3 tree and CART), kernel method (SVM), and ensemble learning algorithms (RF, AdaBoost, XGBoost and LightGBM). In this work, the experiments used a published dataset of lithofacies from Daniudi gas field (DGF) in Ordes Basin, China. Based on a series of comparisons between ML algorithms and their corresponding ensemble models using the ensemble strategy and principles, conclusions are drawn: (1) not only decision tree but also other single-classifiers and ensemble-learning-classifiers can be used as sub-classifiers of homogeneous ensemble learning and the ensemble can improve the accuracy of the original classifiers;(2) the ensemble principles for the introduced homogeneous and heterogeneous ensemble strategy are effective in promoting ML in lithofacies identification;(3) in practice, heterogeneous ensemble is more suitable for building a more powerful lithofacies identification model, though it is complex.
文摘EFL learners,who study English as a foreign language,often use different learning strategies in the learning process,with positive and negative results in their academic performance.Whether these learning strategies are effective or not are questions to be explored.So,the author examined the relationship between Chinese EFL learners’test results and the use of motivated strategies for learning in English learning.Participants are students who have taken a high-stake standardized English proficiency test:IELTS(International English Language Testing System)with band score obtained.The results show that students’performance on high-stakes assessment is significantly associated with the use of motivated learning strategies like internal value in sharp contrast to test anxiety,which bears no relevance.Interviews are then implemented to candidates with different levels of English proficiency to figure out other related factors contributing to the test results.
文摘Language teaching is not a one-way process.It interacts with language learning in an extremely intricate way.To improve language teaching,we need to take the process of language learning into account.This paper tries to explore and understand what strategies the second language learners consciously or subconsciously adopt during their language learning process through the analyses of the linguistic errors they commit,so as to provide some insights into language teaching practice.
文摘This study examined the potential effect of Inquiry-Based Learning Strategy(IBL)on the tenth-grade students’reading comprehension.Two groups and a quasi-experimental design were used.Two complete sections of grade 10 students from a public Secondary School for Girls in Irbid was randomly assigned by the researcher.The experimental group of 30 students was chosen first,and then the control group of 30 students.A pre-post reading comprehension test was designed before and after the study in order to fulfill its goals.Additionally,the experimental group was taught using the IBL strategy,whereas the control group was taught using the traditional teaching methods recommended in the tenth-grade Teacher’s Book.According to the findings,there were significant statistical differences favoring the experimental group over the control group.In light of the findings,the researcher recommended employing the IBL strategy to students with various levels and EFL skills.
文摘Learning strategies are critical in the process of learning, knowing, and thinking. Without strategies, nobody can reach competence, to master certain knowledge and skills which makes him/her an independent learner. The purose of this paper is trying to demonstrate an overview of leaning strategies based on the researches and studies have been done in the field with emphasis on strategy instruction for increasing reading comprehension and writing instruction.
文摘According to schema theory resulting from the psycholinguistic model of reading,comprehending a text is an interactive process between the reader background knowledge and the text. This article first views the psycholinguistic model of reading and research in learning strategies, then discusses the application of socioaffective,cognitive, metacognitive learning strategies in Chinese EFL learners’ reading comprehension.