Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr...Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon.展开更多
The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary al...The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys.It was found that the tip radius r increases and the tip shape amplitude coefficient A4 decreases with the increase of the fitting range for all cases.The dendrite tip shape selection parameter sdecreases and then stabilizes with the increase of the fitting range,and sincreases with the increase of e4.The relationship between sand e4 follows a power-law function sµea 4,and a is independent of DT but dependent on the fitting range.Numerical results demonstrate that the predicted sis consistent with the curve of microscopic solvability theory(MST)for e4<0.02,and sobtained from our phase-field simulations is sensitive to the undercooling when e4 is fixed.展开更多
The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size,...The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.展开更多
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result...In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes.展开更多
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula...In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.展开更多
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results...The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.展开更多
Genetic parameters and response to selection were estimated for harvest body weight in turbot. The data consisted of 10 952 individuals of 508 full-sib families from three generations(G0, G1, and G2). The heritabili...Genetic parameters and response to selection were estimated for harvest body weight in turbot. The data consisted of 10 952 individuals of 508 full-sib families from three generations(G0, G1, and G2). The heritability estimates for G0, G1, and G2 were 0.11±0.08, 0.18±0.09, and 0.17±0.07, respectively. Over three generations, the heritability estimate was 0.19±0.04. Maternal and common environmental effects were 0.10±0.04, 0.14±0.04, and0.13±0.03 within each generation and 0.12±0.01 across generations. The selection differential in growth was 18.24 g in G0 and 21.19 g in G1 corresponding to an average of 19.72 g per generation. The genetic gains were also calculated, they were 22.06 g in G1 and 11.93 g in G2, corresponding to 6.36% and 3.52% body weight. The total genetic gain after two generations was 10.10% body weight, which indicated that the selective breeding program for the body weight trait in turbot was successful.展开更多
Using remote sensing technology for water quality evaluation is an inevitable trend in marine environmental monitoring. However, fewer categories of water quality parameters can be monitored by remote sensing technolo...Using remote sensing technology for water quality evaluation is an inevitable trend in marine environmental monitoring. However, fewer categories of water quality parameters can be monitored by remote sensing technology than the 35 specified in GB3097-1997 Marine Water Quality Standard. Therefore, we considered which parameters must be selected by remote sensing and how to model for water quality evaluation using the finite parameters. In this paper, focused on Leizhou Peninsula nearshore waters, we found N, P, COD, PH and DO to be the dominant parameters of water quality by analyzing measured data. Then, mathematical statistics was used to determine that the relationship among the five parameters was COD〉DO〉P〉N〉pH. Finally, five-parameter, fourparameter and three-parameter water quality evaluation models were established and compared. The results showed that COD, DO, P and N were the necessary parameters for remote sensing evaluation of the Leizhou Peninsula nearshore water quality, and the optimal comprehensive water quality evaluation model was the four- parameter model. This work may serve as a reference for monitoring the quality of other marine waters by remote sensing.展开更多
Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for...Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numericM simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the SO and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.展开更多
In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. ...In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity展开更多
A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the princi...A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the principal component analysis(PCA)and the fuzzy c-means clustering(FCM)algorithm is used to construct the comprehensive driving cycle,congestion driving cycle,urban driving cycle and suburban driving cycle of Chinese urban buses.Secondly,an improved particle swarm optimization(IPSO)algorithm is proposed,and is used to optimize the control parameters of PHEB under different driving cycles,respectively.Then,the variable parameter self-adaptive control strategy based on driving condition identification is given.Finally,for an actual running vehicle,the driving condition is identified by relevance vector machine(RVM),and the corresponding control parameters are selected to control the vehicle.The simulation results show that the fuel consumption of using the variable parameter self-adaptive control strategy is reduced by 4.2% compared with that of the fixed parameter control strategy,and the feasibility of the variable parameter self-adaptive control strategy is verified.展开更多
The paper deals with the state estimation of the widely used scaled unscented Kalman filter(UKF). In particular, the stress is laid on the scaling parameters selection principle for the scaled UKF. Several problems ...The paper deals with the state estimation of the widely used scaled unscented Kalman filter(UKF). In particular, the stress is laid on the scaling parameters selection principle for the scaled UKF. Several problems caused by recommended constant scaling parameters are highlighted. On the basis of the analyses, an effective scaled UKF is proposed with self-adaptive scaling parameters,which is easy to understand and implement in engineering. Two typical strong nonlinear examples are given and their simulation results show the effectiveness of the proposed principle and algorithm.展开更多
Because of the ill-posedness of the near-field acoustic holography(NAH),the regularization method is required to stabilize the computational process of NAH.The regularization effect is related to how to select the p...Because of the ill-posedness of the near-field acoustic holography(NAH),the regularization method is required to stabilize the computational process of NAH.The regularization effect is related to how to select the parameter correctly and effectively.However the L-curve method commonly used for the selection of regularization parameters has the disadvantages of wrong selection and incorrect selection,which influences the application of NAH.For the purpose of solving the problems existed in the L-curve method,the (?)-curve method is introduced into the field of NAH,and the performance applied to NAH directly is analyzed on the basis of equivalent source method-based NAH.However,it is found out via investigations that the(?)-curve method in NAH also has the problem of wrong selection and is unable to choose the regularization parameter correctly.In order to select the parameter correctly and effectively,a novel method for selecting regularization parameters is proposed based on the original(?)-curve method,which can be called improved (?)-curve method.In the proposed method the regularization parameters are discretized linearly between the largest singular value and the smallest singular value,and the solution norm and the residual norm corresponding to these regularization parameters are also described in a linear coordinate instead of in a lg-lg coordinate,which are the two main differences compared with the L-curve and with the original(?)-curve method.In linear coordinate and using the linearly discretized regularization parameters,the solution norm is a monotonically decreasing function of the residual norm as the increase of the regularization parameter,moreover the curve is convex everywhere.So the regularization parameters can be selected correctly and effectively based on the improved(?)-curve method.Then a numerical simulation is done with a simply supported plate to verify the validity of the proposed method.Experiments with two actual sources,a clamped plate and the double speakers,are carried out to do a further demonstration.The simulation result as well as the experimental result shows that the improved(?)-curve method is efficacious and has some advantages over the L-curve method and the original(?)-curve method.The proposed novel method is able to avoid the problem of wrong selection and to select the regularization parameter correctly even if the curve is smooth.展开更多
What determines selection of the most cost effective parameters of hard rock surface mining is consideration of all alternative variants of mine design and the conflicting effect of their parameters on cost. Considera...What determines selection of the most cost effective parameters of hard rock surface mining is consideration of all alternative variants of mine design and the conflicting effect of their parameters on cost. Consideration could be realized based on the mathematical model of the cumulative influence of rockmass and mine design variables on the overall cost per ton of the hard rock drilled, blasted, hauled and primary crushed. Available works on the topic mostly dwelt on four processes of hard rock surface mining separately. This paper dwells on the theoretical part of a research proposed to enhance effectiveness in the selection of the parameters of hard rock surface mining design based on the regression model of overall cost per tonne of the rock mined fit on the determinant variations of rockmass and mine design. The regression model could be developed based on the statistical data generated by many of the hard rock surface mines operating in variable conditions of rockmass and mine design worldwide. Also, a regression model based general algorithm has been formulated for the development of software and computer aided selection of the most cost effective parameters of hard rock surface mining.展开更多
The theory of nu-support vector regression (Nu-SVR) is employed in modeling time series variationfor prediction. In order to avoid prediction performance degradation caused by improper parameters, themethod of paralle...The theory of nu-support vector regression (Nu-SVR) is employed in modeling time series variationfor prediction. In order to avoid prediction performance degradation caused by improper parameters, themethod of parallel multidimensional step search (PMSS) is proposed for users to select best parameters intraining support vector machine to get a prediction model. A series of tests are performed to evaluate themodeling mechanism and prediction results indicate that Nu-SVR models can reflect the variation tendencyof time series with low prediction error on both familiar and unfamiliar data. Statistical analysis is alsoemployed to verify the optimization performance of PMSS algorithm and comparative results indicate thattraining error can take the minimum over the interval around planar data point corresponding to selectedparameters. Moreover, the introduction of parallelization can remarkably speed up the optimizing procedure.展开更多
The evaluation problem with three-parameter interval grey number (T-PIGN) widely exists in real world. To select effective evaluation indicators of the problem, this paper puts forward evaluation index system selectio...The evaluation problem with three-parameter interval grey number (T-PIGN) widely exists in real world. To select effective evaluation indicators of the problem, this paper puts forward evaluation index system selection principle of T-PIGN based on distance entropy model, and gives out evaluation index system selection judgment criterion of T-PIGN. Furthermore, for the redundancy of evaluation index system with T-PIGN, a selection method of evaluation index system with T-PIGN is proposed. Finally, the applicability of the proposed method is verified by concrete examples.展开更多
Affine projection algorithm(APA)has been used to estimate the parameters of interior permanent magnet synchronous motor(IPMSM).However,there is not a strict guideline of choosing the stepsize of this algorithm to make...Affine projection algorithm(APA)has been used to estimate the parameters of interior permanent magnet synchronous motor(IPMSM).However,there is not a strict guideline of choosing the stepsize of this algorithm to make sure that the results of parameter estimation are convergent.In order to solve such problem,self-adaptive stepsize affine projection algorithm for parameter estimation of IPMSM is proposed in this paper.Compared with traditional affine projection algorithm,this method can obtain the stepsize automatically based on the operation condition,which can ensure the convergence and celerity of the process of parameter estimation.Then,on the basis of self-adaptive stepsize affine projection algorithm,a novel parameter estimation method based on square-wave current injection is proposed.By this method,the error of estimated parameter caused by stator resistance,linkage magnetic flux and dead-time voltage can be reduced effectively.Finally,the proposed parameter estimation method is verified by experiments on a 2.2-kW IPMSM drive platform.展开更多
Motivated by the fact that automatic parameters selection for Support Vector Machine(SVM) is an important issue to make SVM practically useful and the common used Leave-One-Out(LOO) method is complex calculation and t...Motivated by the fact that automatic parameters selection for Support Vector Machine(SVM) is an important issue to make SVM practically useful and the common used Leave-One-Out(LOO) method is complex calculation and time consuming,an effective strategy for automatic parameters selection for SVM is proposed by using the Particle Swarm Optimization(PSO) in this paper.Simulation results of practice data model demonstrate the effectiveness and high efficiency of the proposed approach.展开更多
In May of 2007,the second generation selected (SS) and control (SC) groups of pearl oyster Pinctada martensii were established by selecting 10% breeders with the largest and mean shell length,respectively,from the...In May of 2007,the second generation selected (SS) and control (SC) groups of pearl oyster Pinctada martensii were established by selecting 10% breeders with the largest and mean shell length,respectively,from the first generation selected group.Growth performance of the SS and SC groups were compared on the basis of measurement data at Days 8,18,60,95,195 and 365.On Day 365,100 individuals (60.0–75.0 mm at shell length) were sampled from each group and then subjected to the experiment where physiological parameters such as filtrate rate,oxygen consumption and ammonia excretion were measured at 15,20,25 and 30°C.The results show that the SS group had significantly larger mean shell length and shell height than the SC group at Days 8,18,60,95,195 and 365 (P 0.05).The genetic gains at different ages varied from 6.0% to 17.0% for shell length and 5.7% to 14.6% for shell height,respectively.At 15,20,25 and 30 ° C,the SS groups had significantly larger filtrate rate than the SC group (P 0.05).At 15 and 25 °C,the differences in oxygen consumption rate between the SS and SC groups were not significant (P 0.05).At 20 and 30 °C,however,the oxygen consumption rate of the SS group was significantly larger than the SC group (P 0.05).At 15,20,25 and 30 °C,there were no significant differences in ammonia excretion rate between the SS and SC groups (P 0.05).The present results indicate that there existed considerable genetic variability in the base population and a further selection could be likely fruitful.Mass selection for faster growth might produce animals that had higher intake of metabolizable energy by virtue of faster filtrating behavior.展开更多
Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat...Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.展开更多
基金financial supports from the National Natural Science Foundation of China(52130104,51821001)High Technology and Key Development Project of Ningbo,China(2019B10102)。
文摘Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon.
基金the National Key Research and De-velopment Program of China(Grant No.2021YFB3502600)Shenzhen Science and Technology Program(Grant No.JCYJ20220530161813029).
文摘The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys.It was found that the tip radius r increases and the tip shape amplitude coefficient A4 decreases with the increase of the fitting range for all cases.The dendrite tip shape selection parameter sdecreases and then stabilizes with the increase of the fitting range,and sincreases with the increase of e4.The relationship between sand e4 follows a power-law function sµea 4,and a is independent of DT but dependent on the fitting range.Numerical results demonstrate that the predicted sis consistent with the curve of microscopic solvability theory(MST)for e4<0.02,and sobtained from our phase-field simulations is sensitive to the undercooling when e4 is fixed.
基金Shanxi Province Science and Technology Research Project(No.20140321008-03)
文摘The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312200) and the Center for Bioinformatics Pro-gram Grant of Harvard Center of Neurodegeneration and Repair,Harvard Medical School, Harvard University, Boston, USA
文摘In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes.
基金Supported by the Natural Science Foundation of Anhui Education Committee
文摘In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.
基金the National Nature Science Foundation of China (60775047, 60402024)
文摘The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.
基金The Taishan Scholar Program for Seed Industry under contract No.ZR2014CQ001the Accurate Identification and Selection Breeding Creative Utilization of Turbot Germplasm Resources under contract No.2016LZGC031-2
文摘Genetic parameters and response to selection were estimated for harvest body weight in turbot. The data consisted of 10 952 individuals of 508 full-sib families from three generations(G0, G1, and G2). The heritability estimates for G0, G1, and G2 were 0.11±0.08, 0.18±0.09, and 0.17±0.07, respectively. Over three generations, the heritability estimate was 0.19±0.04. Maternal and common environmental effects were 0.10±0.04, 0.14±0.04, and0.13±0.03 within each generation and 0.12±0.01 across generations. The selection differential in growth was 18.24 g in G0 and 21.19 g in G1 corresponding to an average of 19.72 g per generation. The genetic gains were also calculated, they were 22.06 g in G1 and 11.93 g in G2, corresponding to 6.36% and 3.52% body weight. The total genetic gain after two generations was 10.10% body weight, which indicated that the selective breeding program for the body weight trait in turbot was successful.
基金The Science and Technology Project of Guangdong Province under contract No.2014A010103030the Postdoctoral Science Foundation of Zhejiang under contract No.BSH1301015the Supported by Foundation for Distinguished Young Talents in Higher Education of Guangdong Province No.GDOU2013050233
文摘Using remote sensing technology for water quality evaluation is an inevitable trend in marine environmental monitoring. However, fewer categories of water quality parameters can be monitored by remote sensing technology than the 35 specified in GB3097-1997 Marine Water Quality Standard. Therefore, we considered which parameters must be selected by remote sensing and how to model for water quality evaluation using the finite parameters. In this paper, focused on Leizhou Peninsula nearshore waters, we found N, P, COD, PH and DO to be the dominant parameters of water quality by analyzing measured data. Then, mathematical statistics was used to determine that the relationship among the five parameters was COD〉DO〉P〉N〉pH. Finally, five-parameter, fourparameter and three-parameter water quality evaluation models were established and compared. The results showed that COD, DO, P and N were the necessary parameters for remote sensing evaluation of the Leizhou Peninsula nearshore water quality, and the optimal comprehensive water quality evaluation model was the four- parameter model. This work may serve as a reference for monitoring the quality of other marine waters by remote sensing.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11074164 and 10874110)the Shanghai Leading Academic Discipline Project,China (Grant No.S30108)+1 种基金the Science and Technology Commission of Shanghai Municipality,China (Grant No.08DZ2231100)the Innovation Foundation of Shanghai Municipal Commission of Education,China (Grant No.11YZ17)
文摘Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numericM simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the SO and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.
基金Supported by the National High Technology Research and Development Program of China(863Program)(2012AA8012011C)
文摘In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity
基金Supported by China Automobile Test Cycle Development Project(CATC2015)
文摘A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the principal component analysis(PCA)and the fuzzy c-means clustering(FCM)algorithm is used to construct the comprehensive driving cycle,congestion driving cycle,urban driving cycle and suburban driving cycle of Chinese urban buses.Secondly,an improved particle swarm optimization(IPSO)algorithm is proposed,and is used to optimize the control parameters of PHEB under different driving cycles,respectively.Then,the variable parameter self-adaptive control strategy based on driving condition identification is given.Finally,for an actual running vehicle,the driving condition is identified by relevance vector machine(RVM),and the corresponding control parameters are selected to control the vehicle.The simulation results show that the fuel consumption of using the variable parameter self-adaptive control strategy is reduced by 4.2% compared with that of the fixed parameter control strategy,and the feasibility of the variable parameter self-adaptive control strategy is verified.
基金supported by the National Natural Science Foundation of China(61703228)
文摘The paper deals with the state estimation of the widely used scaled unscented Kalman filter(UKF). In particular, the stress is laid on the scaling parameters selection principle for the scaled UKF. Several problems caused by recommended constant scaling parameters are highlighted. On the basis of the analyses, an effective scaled UKF is proposed with self-adaptive scaling parameters,which is easy to understand and implement in engineering. Two typical strong nonlinear examples are given and their simulation results show the effectiveness of the proposed principle and algorithm.
基金supported by National Natural Science Foundation of China(Grant No.11004045,No.10974040)Fok Ying Tung Education Foundation of China(Grant No.111058)Program for New Century Excellent Talents in University of China(Grant No.NCET-08-0767)
文摘Because of the ill-posedness of the near-field acoustic holography(NAH),the regularization method is required to stabilize the computational process of NAH.The regularization effect is related to how to select the parameter correctly and effectively.However the L-curve method commonly used for the selection of regularization parameters has the disadvantages of wrong selection and incorrect selection,which influences the application of NAH.For the purpose of solving the problems existed in the L-curve method,the (?)-curve method is introduced into the field of NAH,and the performance applied to NAH directly is analyzed on the basis of equivalent source method-based NAH.However,it is found out via investigations that the(?)-curve method in NAH also has the problem of wrong selection and is unable to choose the regularization parameter correctly.In order to select the parameter correctly and effectively,a novel method for selecting regularization parameters is proposed based on the original(?)-curve method,which can be called improved (?)-curve method.In the proposed method the regularization parameters are discretized linearly between the largest singular value and the smallest singular value,and the solution norm and the residual norm corresponding to these regularization parameters are also described in a linear coordinate instead of in a lg-lg coordinate,which are the two main differences compared with the L-curve and with the original(?)-curve method.In linear coordinate and using the linearly discretized regularization parameters,the solution norm is a monotonically decreasing function of the residual norm as the increase of the regularization parameter,moreover the curve is convex everywhere.So the regularization parameters can be selected correctly and effectively based on the improved(?)-curve method.Then a numerical simulation is done with a simply supported plate to verify the validity of the proposed method.Experiments with two actual sources,a clamped plate and the double speakers,are carried out to do a further demonstration.The simulation result as well as the experimental result shows that the improved(?)-curve method is efficacious and has some advantages over the L-curve method and the original(?)-curve method.The proposed novel method is able to avoid the problem of wrong selection and to select the regularization parameter correctly even if the curve is smooth.
文摘What determines selection of the most cost effective parameters of hard rock surface mining is consideration of all alternative variants of mine design and the conflicting effect of their parameters on cost. Consideration could be realized based on the mathematical model of the cumulative influence of rockmass and mine design variables on the overall cost per ton of the hard rock drilled, blasted, hauled and primary crushed. Available works on the topic mostly dwelt on four processes of hard rock surface mining separately. This paper dwells on the theoretical part of a research proposed to enhance effectiveness in the selection of the parameters of hard rock surface mining design based on the regression model of overall cost per tonne of the rock mined fit on the determinant variations of rockmass and mine design. The regression model could be developed based on the statistical data generated by many of the hard rock surface mines operating in variable conditions of rockmass and mine design worldwide. Also, a regression model based general algorithm has been formulated for the development of software and computer aided selection of the most cost effective parameters of hard rock surface mining.
基金Supported by the National Natural Science Foundation of China (No. 60873235&60473099)the Science-Technology Development Key Project of Jilin Province of China (No. 20080318)the Program of New Century Excellent Talents in University of China (No. NCET-06-0300).
文摘The theory of nu-support vector regression (Nu-SVR) is employed in modeling time series variationfor prediction. In order to avoid prediction performance degradation caused by improper parameters, themethod of parallel multidimensional step search (PMSS) is proposed for users to select best parameters intraining support vector machine to get a prediction model. A series of tests are performed to evaluate themodeling mechanism and prediction results indicate that Nu-SVR models can reflect the variation tendencyof time series with low prediction error on both familiar and unfamiliar data. Statistical analysis is alsoemployed to verify the optimization performance of PMSS algorithm and comparative results indicate thattraining error can take the minimum over the interval around planar data point corresponding to selectedparameters. Moreover, the introduction of parallelization can remarkably speed up the optimizing procedure.
文摘The evaluation problem with three-parameter interval grey number (T-PIGN) widely exists in real world. To select effective evaluation indicators of the problem, this paper puts forward evaluation index system selection principle of T-PIGN based on distance entropy model, and gives out evaluation index system selection judgment criterion of T-PIGN. Furthermore, for the redundancy of evaluation index system with T-PIGN, a selection method of evaluation index system with T-PIGN is proposed. Finally, the applicability of the proposed method is verified by concrete examples.
文摘Affine projection algorithm(APA)has been used to estimate the parameters of interior permanent magnet synchronous motor(IPMSM).However,there is not a strict guideline of choosing the stepsize of this algorithm to make sure that the results of parameter estimation are convergent.In order to solve such problem,self-adaptive stepsize affine projection algorithm for parameter estimation of IPMSM is proposed in this paper.Compared with traditional affine projection algorithm,this method can obtain the stepsize automatically based on the operation condition,which can ensure the convergence and celerity of the process of parameter estimation.Then,on the basis of self-adaptive stepsize affine projection algorithm,a novel parameter estimation method based on square-wave current injection is proposed.By this method,the error of estimated parameter caused by stator resistance,linkage magnetic flux and dead-time voltage can be reduced effectively.Finally,the proposed parameter estimation method is verified by experiments on a 2.2-kW IPMSM drive platform.
文摘Motivated by the fact that automatic parameters selection for Support Vector Machine(SVM) is an important issue to make SVM practically useful and the common used Leave-One-Out(LOO) method is complex calculation and time consuming,an effective strategy for automatic parameters selection for SVM is proposed by using the Particle Swarm Optimization(PSO) in this paper.Simulation results of practice data model demonstrate the effectiveness and high efficiency of the proposed approach.
基金The National Key Technology R&D Program in the 11th Five Year Plan of China under contract No. 2007BAD29B01-2National Department Public Benefit Research Foundation under contract No. nyhyzx 07-048Guangdong Marine and Fishery Bureau under contract Nos A200708C01, A200908A02 and A200908A05
文摘In May of 2007,the second generation selected (SS) and control (SC) groups of pearl oyster Pinctada martensii were established by selecting 10% breeders with the largest and mean shell length,respectively,from the first generation selected group.Growth performance of the SS and SC groups were compared on the basis of measurement data at Days 8,18,60,95,195 and 365.On Day 365,100 individuals (60.0–75.0 mm at shell length) were sampled from each group and then subjected to the experiment where physiological parameters such as filtrate rate,oxygen consumption and ammonia excretion were measured at 15,20,25 and 30°C.The results show that the SS group had significantly larger mean shell length and shell height than the SC group at Days 8,18,60,95,195 and 365 (P 0.05).The genetic gains at different ages varied from 6.0% to 17.0% for shell length and 5.7% to 14.6% for shell height,respectively.At 15,20,25 and 30 ° C,the SS groups had significantly larger filtrate rate than the SC group (P 0.05).At 15 and 25 °C,the differences in oxygen consumption rate between the SS and SC groups were not significant (P 0.05).At 20 and 30 °C,however,the oxygen consumption rate of the SS group was significantly larger than the SC group (P 0.05).At 15,20,25 and 30 °C,there were no significant differences in ammonia excretion rate between the SS and SC groups (P 0.05).The present results indicate that there existed considerable genetic variability in the base population and a further selection could be likely fruitful.Mass selection for faster growth might produce animals that had higher intake of metabolizable energy by virtue of faster filtrating behavior.
基金This work was supported by the National Natural Science Foundation of China(No.60375001)the High School Doctoral Foundation of China(NO.20030532004).
文摘Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.