期刊文献+
共找到76,246篇文章
< 1 2 250 >
每页显示 20 50 100
Bidirectional rotating direct-current triboelectric nanogenerator with self-adaptive mechanical switching for harvesting reciprocating motion
1
作者 Donghan Lee Joonmin Chae +6 位作者 Sumin Cho Jong Woo Kim Awais Ahmad Mohammad Rezaul Karim Moonwoo La Sung Jea Park Dongwhi Choi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期324-335,共12页
Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic device... Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices. 展开更多
关键词 direct-current triboelectric nanogenerator mechanical rectification self-adaptive mechanical design harvesting reciprocation motion
下载PDF
Dynamic Economic Scheduling with Self-Adaptive Uncertainty in Distribution Network Based on Deep Reinforcement Learning
2
作者 Guanfu Wang Yudie Sun +5 位作者 Jinling Li Yu Jiang Chunhui Li Huanan Yu He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1671-1695,共25页
Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to... Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem. 展开更多
关键词 self-adaptive the uncertainty of sources and load deep reinforcement learning dynamic economic scheduling
下载PDF
基于ER Rule的多分类器汽车评论情感分类研究
3
作者 周谧 周雅婧 +1 位作者 贺洋 方必和 《运筹与管理》 CSCD 北大核心 2024年第5期161-168,共8页
该文针对汽车评论语料的情感二分类问题,提出一种基于证据推理规则的多分类器融合的情感分类方法。在情感特征构建方面,通过实验对比不同特征模型对分类结果的影响,并改进传统的TFIDF权重计算方法。同时,在此基础上使用ER Rule融合不同... 该文针对汽车评论语料的情感二分类问题,提出一种基于证据推理规则的多分类器融合的情感分类方法。在情感特征构建方面,通过实验对比不同特征模型对分类结果的影响,并改进传统的TFIDF权重计算方法。同时,在此基础上使用ER Rule融合不同分类器进行文本情感极性分析,并考虑各分类器的权重和可靠度。最后,爬取汽车网站上的评论数据对上述方法进行测试,并用公开的中文酒店评论语料数据进行了验证,结果表明该方法能够有效集成不同分类器的优点,与传统机器学习分类算法相比,其结果在Recall,F1值和Accuracy三个指标上得到了提高,与目前流行的深度学习算法和集成学习算法相比,其结果总体占优。 展开更多
关键词 证据推理规则 多分类器融合 TFIDF权重 深度学习算法 集成学习算法
下载PDF
A WSN Node Fault Diagnosis Model Based on BRB with Self-Adaptive Quality Factor
4
作者 Guo-Wen Sun Gang Xiang +3 位作者 Wei He Kai Tang Zi-Yi Wang Hai-Long Zhu 《Computers, Materials & Continua》 SCIE EI 2023年第4期1157-1177,共21页
Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and ... Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method. 展开更多
关键词 self-adaptive quality factor belief rule base wireless sensor networks fault diagnosis
下载PDF
Self-adaptive fuzzy controller with formulary rule for servo control of discharge gap in Micro EDM 被引量:2
5
作者 TongHao LiYong 《High Technology Letters》 EI CAS 2012年第3期223-229,共7页
In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems a... In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems above, a self-adaptive fuzzy controller with formulary rule (SAFCFR) is presented based on the dual feedbacks composed by gap electric signal and discharge-ratio statistics. To ensure the properties of self-optimizing and fast stabilization, the formulary rule was designed with a tuning factor. In addition, the fast-convergence algorithms were introduced to adjust control target center and output scale factor. In this way, the normal discharge ratio can tend to the highest value during micro-EDM process. Experimental results show that the proposed algorithms are effective in improving the servo-control performance. According to the drilling-micro-EDM experiments, the machining efficiency is improved by 20% through applying SAFCFR. Moreover, SAFCFR is a prompt way to optimize parameters of discharge-gap servo control. 展开更多
关键词 MICRO-EDM self-adaptive fuzzy control discharge gap formulary rule fast con-vergence algorithm
下载PDF
Formal Modeling of Self-Adaptive Resource Scheduling in Cloud
6
作者 Atif Ishaq Khan Syed Asad Raza Kazmi Awais Qasim 《Computers, Materials & Continua》 SCIE EI 2023年第1期1183-1197,共15页
A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive... A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive strategy of resources is required to deal with dynamic nature of requests based on run time change in workload.In this paper we proposed a Cloud-based Adaptive Resource Scheduling Strategy(CARSS)Framework that formally addresses these issues and is more expressive than traditional approaches.The decision making in CARSS is based on more than one factors.TheMAPE-K based framework determines the state of the resources based on their current utilization.Timed-Arc Petri Net(TAPN)is used to model system formally and behaviour is expressed in TCTL,while TAPAAL model checker verifies the underline properties of the system. 展开更多
关键词 Formal modeling MULTI-AGENT self-adaptive cloud computing
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:1
7
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 Solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer self-adaptability
下载PDF
Self-adaptive bulk/surface engineering of Bi_(x)O_(y)Br_(z) towards enhanced photocatalysis:Current status and future challenges
8
作者 Zhiwei Wu Bidyut Kumar Kundu +5 位作者 Wanqiong Kang Lei Mao Sen Zhang Lan Yuan Fen Guo Chuang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期387-413,I0009,共28页
The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of c... The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of charge carrier,and surface site reaction.Recent years have witnessed the encouraging progress of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z) for photocatalytic applications spanning various fields.However,despite the maturity of current research,the interaction between the bulk/surface state and the performance of Bi_(x)O_(y)Br_(z) has not yet been fully understood and highlighted.In this regard,a timely tutorial overview is quite urgent to summarize the most recent key progress and outline developing obstacles in this exciting area.Herein,the structural characteristics and fundamental principles of Bi_(x)O_(y)Br_(z)for driving photocatalytic reaction as well as related key issues are firstly reviewed.Then,we for the first time summarized different self-adaptive engineering processes over Bi_(x)O_(y)Br_(z)followed by a classification of the generation approaches towards diverse Bi_(x)O_(y)Br_(z)materials.The features of different strategies,the up-to-date characterization techniques to detect bulk/surface states,and the effect of bulk/surface states on improving the photoactivity of Bi_(x)O_(y)Br_(z)in expanded applications are further discussed.Finally,the present research status,challenges,and future research opportunities of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z)are prospected.It is anticipated that this critical review can trigger deeper investigations and attract upcoming innovative ideas on the rational design of Bi_(x)O_(y)Br_(z)-based photocatalysts. 展开更多
关键词 Bismuth oxybromide self-adaptive engineering Pollutant degradation Energy application PHOTOCATALYSIS
下载PDF
THAPE: A Tunable Hybrid Associative Predictive Engine Approach for Enhancing Rule Interpretability in Association Rule Learning for the Retail Sector
9
作者 Monerah Alawadh Ahmed Barnawi 《Computers, Materials & Continua》 SCIE EI 2024年第6期4995-5015,共21页
Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only f... Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors.Recently,several post-processing methods have been proposed,each with its own strengths and weaknesses.In this paper,we propose THAPE(Tunable Hybrid Associative Predictive Engine),which combines descriptive and predictive techniques.By leveraging both techniques,our aim is to enhance the quality of analyzing generated rules.This includes removing irrelevant or redundant rules,uncovering interesting and useful rules,exploring hidden association rules that may affect other factors,and providing backtracking ability for a given product.The proposed approach offers a tailored method that suits specific goals for retailers,enabling them to gain a better understanding of customer behavior based on factual transactions in the target market.We applied THAPE to a real dataset as a case study in this paper to demonstrate its effectiveness.Through this application,we successfully mined a concise set of highly interesting and useful association rules.Out of the 11,265 rules generated,we identified 125 rules that are particularly relevant to the business context.These identified rules significantly improve the interpretability and usefulness of association rules for decision-making purposes. 展开更多
关键词 Association rule learning POST-PROCESSING PREDICTIVE machine learning rule interpretability
下载PDF
Semantic Consistency and Correctness Verification of Digital Traffic Rules
10
作者 Lei Wan Changjun Wang +3 位作者 Daxin Luo Hang Liu Sha Ma Weichao Hu 《Engineering》 SCIE EI CAS CSCD 2024年第2期47-62,共16页
The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules... The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules can be translated into machine language and used by autonomous vehicles.In this paper,a translation flow is designed.Beyond the translation,a deeper examination is required,because the semantics of natural languages are rich and complex,and frequently contain hidden assumptions.The issue of how to ensure that digital rules are accurate and consistent with the original intent of the traffic rules they represent is both significant and unresolved.In response,we propose a method of formal verification that combines equivalence verification with model checking.Reasonable and reassuring digital traffic rules can be obtained by utilizing the proposed traffic rule digitization flow and verification method.In addition,we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.The experimental findings indicate that our digital rules utilizing metric temporal logic(MTL)can be easily incorporated into simulation platforms and autonomous driving systems(ADS). 展开更多
关键词 Autonomous driving Traffic rules DIGITIZATION FORMALIZATION VERIFICATION
下载PDF
STRONGLY CONVERGENT INERTIAL FORWARD-BACKWARD-FORWARD ALGORITHM WITHOUT ON-LINE RULE FOR VARIATIONAL INEQUALITIES
11
作者 姚永红 Abubakar ADAMU Yekini SHEHU 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期551-566,共16页
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti... This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature. 展开更多
关键词 forward-backward-forward algorithm inertial extrapolation variational inequality on-line rule
下载PDF
Density Clustering Algorithm Based on KD-Tree and Voting Rules
12
作者 Hui Du Zhiyuan Hu +1 位作者 Depeng Lu Jingrui Liu 《Computers, Materials & Continua》 SCIE EI 2024年第5期3239-3259,共21页
Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional... Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy. 展开更多
关键词 Density peaks clustering KD-TREE K-nearest neighbors voting rules
下载PDF
Improved STNModels and Heuristic Rules for Cooperative Scheduling in Automated Container Terminals
13
作者 Hongyan Xia Jin Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1637-1661,共25页
Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the exis... Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average. 展开更多
关键词 Automated container terminal BUFFER cooperative scheduling heuristic rules space-time network
下载PDF
Advancements in Medication Rule for Pulmonary Nodules: A Review of Current Research Progress
14
作者 Weilan Lin Shun Chen Feng Lu 《Journal of Biosciences and Medicines》 2024年第3期193-203,共11页
This paper reviewed the literature on medication rule of pulmonary nodules in recent years. It is found that contemporary doctors pay more attention to regulating Qi, clearing heat and detoxifying, eliminating phlegm,... This paper reviewed the literature on medication rule of pulmonary nodules in recent years. It is found that contemporary doctors pay more attention to regulating Qi, clearing heat and detoxifying, eliminating phlegm, dissolving phlegm and dissipating masses. They use mild drugs, cold and warm treatments in parallel, combining the tastes of pungent, bitterness, and sweetness at the same time. The treatment focuses on the five viscera with emphasis on the lung meridian while also considering the spleen and stomach functions as well as soothing liver stagnation. This information aims to provide some reference for clinical treatment of pulmonary nodules. 展开更多
关键词 Pulmonary Nodules Medication rule REVIEW
下载PDF
Heterogeneous information fusion recognition method based on belief rule structure
15
作者 WANG Haibin GUAN Xin +1 位作者 YI Xiao SUN Guidong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期955-964,共10页
To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on be... To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on belief rule structure is proposed.By defining the continuous probabilistic hesitation fuzzy linguistic term sets(CPHFLTS)and establishing CPHFLTS distance measure,the belief rule base of the relationship between feature space and category space is constructed through information integration,and the evidence reasoning of the input samples is carried out.The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition.Compared with the other methods,the proposed method has a higher correct recognition rate under different noise levels. 展开更多
关键词 belief rule heterogeneous information intention recognition hesitation fuzzy linguistic
下载PDF
Rule acquisition of three-way semi-concept lattices in formal decision context
16
作者 Jie Zhao Renxia Wan +1 位作者 Duoqian Miao Boyang Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期333-347,共15页
Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way ... Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way semi-concept lattices have three-way operators with weaker constraints,which can generate more concepts.In this article,the problem of rule acquisition for three-way semi-concept lattices is discussed in general.The authors construct the finer relation of three-way semi-concept lattices,and propose a method of rule acquisition for three-way semi-concept lattices.The authors also discuss the set of decision rules and the relationships of decision rules among object-induced three-way semi-concept lattices,object-induced three-way concept lattices,classical concept lattices and semi-concept lattices.Finally,examples are provided to illustrate the validity of our conclusions. 展开更多
关键词 finer relation rule acquisition three-way concept analysis three-way semi-concept lattices
下载PDF
Learning Vector Quantization-Based Fuzzy Rules Oversampling Method
17
作者 Jiqiang Chen Ranran Han +1 位作者 Dongqing Zhang Litao Ma 《Computers, Materials & Continua》 SCIE EI 2024年第6期5067-5082,共16页
Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ... Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data. 展开更多
关键词 OVERSAMPLING fuzzy rules learning vector quantization imbalanced data support function machine
下载PDF
Composite Fractional Trapezoidal Rule with Romberg Integration
18
作者 Iqbal M.Batiha Rania Saadeh +3 位作者 Iqbal H.Jebril Ahmad Qazza Abeer A.Al-Nana Shaher Momani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2729-2745,共17页
The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Tra... The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme. 展开更多
关键词 Composite fractional Trapezoidal rule Romberg integration
下载PDF
Multi-modal knowledge graph inference via media convergence and logic rule
19
作者 Feng Lin Dongmei Li +5 位作者 Wenbin Zhang Dongsheng Shi Yuanzhou Jiao Qianzhong Chen Yiying Lin Wentao Zhu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期211-221,共11页
Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the intro... Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features. 展开更多
关键词 logic rule media convergence multi-modal knowledge graph inference representation learning
下载PDF
Automatic Rule Discovery for Data Transformation Using Fusion of Diversified Feature Formats
20
作者 G.Sunil Santhosh Kumar M.Rudra Kumar 《Computers, Materials & Continua》 SCIE EI 2024年第7期695-713,共19页
This article presents an innovative approach to automatic rule discovery for data transformation tasks leveraging XGBoost,a machine learning algorithm renowned for its efficiency and performance.The framework proposed... This article presents an innovative approach to automatic rule discovery for data transformation tasks leveraging XGBoost,a machine learning algorithm renowned for its efficiency and performance.The framework proposed herein utilizes the fusion of diversified feature formats,specifically,metadata,textual,and pattern features.The goal is to enhance the system’s ability to discern and generalize transformation rules fromsource to destination formats in varied contexts.Firstly,the article delves into the methodology for extracting these distinct features from raw data and the pre-processing steps undertaken to prepare the data for the model.Subsequent sections expound on the mechanism of feature optimization using Recursive Feature Elimination(RFE)with linear regression,aiming to retain the most contributive features and eliminate redundant or less significant ones.The core of the research revolves around the deployment of the XGBoostmodel for training,using the prepared and optimized feature sets.The article presents a detailed overview of the mathematical model and algorithmic steps behind this procedure.Finally,the process of rule discovery(prediction phase)by the trained XGBoost model is explained,underscoring its role in real-time,automated data transformations.By employingmachine learning and particularly,the XGBoost model in the context of Business Rule Engine(BRE)data transformation,the article underscores a paradigm shift towardsmore scalable,efficient,and less human-dependent data transformation systems.This research opens doors for further exploration into automated rule discovery systems and their applications in various sectors. 展开更多
关键词 XGBoost business rule engine machine learning categorical query language humanitarian computing environment
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部