期刊文献+
共找到1,355篇文章
< 1 2 68 >
每页显示 20 50 100
Adaptive Gain Tuning Rule for Nonlinear Sliding-mode Speed Control of Encoderless Three-phase Permanent Magnet Assisted Synchronous Motor 被引量:1
1
作者 Ghada A.Abdel Aziz Rehan Ali Khan 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期301-310,共10页
In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r... In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions. 展开更多
关键词 Permanent magnet assisted synchronous reluctance motor Nonlinear sliding mode speed control Speed estimation Parameter uncertainties sliding mode estimator
下载PDF
Integrated Sliding Mode Velocity Control of Linear Permanent Magnet Synchronous Motor with Thrust Ripple Compensation
2
作者 Cong Bai Zhonggang Yin +2 位作者 Jing Liu Yanqing Zhang Xiangdong Sun 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第1期100-109,共10页
In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear perma... In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results. 展开更多
关键词 Linear permanent magnet synchronous motor(LPMSM) sliding mode velocity control New exponential reaching law Thrust ripple compensation
下载PDF
Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller 被引量:3
3
作者 王东风 张金营 王晓燕 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期178-184,共7页
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional... This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme. 展开更多
关键词 fractional-order chaotic system synchronization terminal sliding mode control UNCERTAINTY DISTURBANCE
下载PDF
Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control 被引量:3
4
作者 王立明 唐永光 +1 位作者 柴永泉 吴峰 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期64-70,共7页
An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the desig... An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication. 展开更多
关键词 generalized projective chaos synchronization fuzzy sliding mode control fractional order chaoticsystem
下载PDF
Chaos synchronization of a chain network based on a sliding mode control 被引量:1
5
作者 柳爽 陈立群 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期176-181,共6页
A sliding mode control approach is proposed to implement the synchronization of the chain tree network. The doublescroll circuit chaos systems are treated as nodes and the network is constructed with the state variabl... A sliding mode control approach is proposed to implement the synchronization of the chain tree network. The doublescroll circuit chaos systems are treated as nodes and the network is constructed with the state variable coupling. By selecting a switching sliding surface, the chaos synchronization of the network is achieved with one control input only. The stability analysis and the numerical simulations demonstrate that the complete synchronization in a chain network can be realized for all nodes. 展开更多
关键词 ~haos synchronization sliding mode control Lyapunov stability double-scroll circuit
下载PDF
A new four-dimensional chaotic system with first Lyapunov exponent of about 22,hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control 被引量:1
6
作者 Jay Prakash Singh Binoy Krishna Roy 魏周超 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期214-227,共14页
This paper presents a new four-dimensional(4 D) autonomous chaotic system which has first Lyapunov exponent of about 22 and is comparatively larger than many existing three-dimensional(3 D) and 4 D chaotic systems... This paper presents a new four-dimensional(4 D) autonomous chaotic system which has first Lyapunov exponent of about 22 and is comparatively larger than many existing three-dimensional(3 D) and 4 D chaotic systems.The proposed system exhibits hyperbolic curve and circular paraboloid types of equilibria.The system has all zero eigenvalues for a particular case of an equilibrium point.The system has various dynamical behaviors like hyperchaotic,chaotic,periodic,and quasi-periodic.The system also exhibits coexistence of attractors.Dynamical behavior of the new system is validated using circuit implementation.Further an interesting switching synchronization phenomenon is proposed for the new chaotic system.An adaptive global integral sliding mode control is designed for the switching synchronization of the proposed system.In the switching synchronization,the synchronization is shown for the switching chaotic,stable,periodic,and hybrid synchronization behaviors.Performance of the controller designed in the paper is compared with an existing controller. 展开更多
关键词 new hyperchaotic system maximum chaos an infinite number of equilibria hidden attractors switching synchronization global sliding mode control
下载PDF
Sliding mode control for synchronization of chaotic systems with structure or parameters mismatching 被引量:3
7
作者 厉小润 赵辽英 赵光宙 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第6期571-576,共6页
This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form.... This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form. A feedback control for synchronizing two chaotic systems is proposed based on sliding mode control design. To make this controller physically realizable, an extended state observer is used to estimate the error between the transmitter and receiver. Two illustrative examples were carried out: (1) The Chua oscillator was used to show that synchronization was achieved and the message signal was recovered in spite of parametric variations; (2) Two second-order driven oscillators were presented to show that the synchronization can be achieved and that the message can be recovered in spite of the strictly different model. 展开更多
关键词 滑行模式控制 同步无序系统 状态观测 安全信息 自动控制
下载PDF
Synchronization of different chaotic systems via active radial basis functions sliding mode controller
8
作者 郭会军 尹有为 王华民 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1652-1663,共12页
This paper presents a new method to synchronize different chaotic systems with disturbances via an active radial basis function (RBF) sliding controller. This method incorporates the advantages of active control, ne... This paper presents a new method to synchronize different chaotic systems with disturbances via an active radial basis function (RBF) sliding controller. This method incorporates the advantages of active control, neural network and sliding mode control. The main part of the controller is given based on the output of the RBF neural networks and the weights of these single layer networks are tuned on-line based on the sliding mode reaching law. Only several radial basis functions are required for this controller which takes the sliding mode variable as the only input. The proposed controller can make the synchronization error converge to zero quickly and can overcome external disturbances. Analysis of the stability for the controller is carried out based on the Lyapunov stability theorem. Finally, five examples are given to illustrate the robustness and effectiveness of the proposed synchronization control strategy. 展开更多
关键词 chaos synchronization active control sliding mode control RBF networks
下载PDF
Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
9
作者 Alireza Khanzadeh Mahdi Pourgholi 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期86-93,共8页
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a slidin... In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time. 展开更多
关键词 chaos synchronization finite time synchronization sliding mode controller time varying switching surfaces
下载PDF
Outer synchronization of uncertain small-world networks via adaptive sliding mode control
10
作者 Shuang LIU Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第3期319-328,共10页
The outer synchronization of irregular coupled complex networks is inves- tigated with nonidentical topological structures. The switching gain is estimated by an adaptive technique, and a sliding mode controller is de... The outer synchronization of irregular coupled complex networks is inves- tigated with nonidentical topological structures. The switching gain is estimated by an adaptive technique, and a sliding mode controller is designed to satisfy the sliding con- dition. The outer synchronization between two irregular coupled complex networks with different initial conditions is implemented via the designed controllers with the corre- sponding parameter update laws. The chaos synchronization of two small-world networks consisting of N uncertain identical Lorenz systems is achieved to demonstrate the appli- cations of the proposed approach. 展开更多
关键词 adaptive synchronization sliding mode control Lyapunov stability small- world network
下载PDF
Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
11
作者 吕翎 于淼 +2 位作者 韦琳玲 张檬 李雨珊 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期174-178,共5页
The sliding mode control method is used to study spatiotemporal chaos synchronization of an uncertain network.The method is extended from synchronization between two chaotic systems to the synchronization of complex n... The sliding mode control method is used to study spatiotemporal chaos synchronization of an uncertain network.The method is extended from synchronization between two chaotic systems to the synchronization of complex network composed of N spatiotemporal chaotic systems.The sliding surface of the network and the control input are designed.Furthermore,the effectiveness of the method is analysed based on the stability theory.The Burgers equation with spatiotemporal chaos behavior is taken as an example to simulate the experiment.It is found that the synchronization performance of the network is very stable. 展开更多
关键词 spatiotemporal chaos synchronization complex network sliding mode control Lyapunov theorem
下载PDF
Synchronization of noise-perturbed generalized Lorenz system by sliding mode control
12
作者 孔翠翠 陈士华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第1期91-97,共7页
Synchronization of a noise-perturbed generalized Lorenz system by using sliding mode control method is investigated in this paper. Two sliding mode control methods are proposed to synchronize the noise-perturbed gener... Synchronization of a noise-perturbed generalized Lorenz system by using sliding mode control method is investigated in this paper. Two sliding mode control methods are proposed to synchronize the noise-perturbed generalized Lorenz system. Numerical simulations are also provided for the illustration and verification of the methods. 展开更多
关键词 sliding mode control synchronization generalized Lorenz system
下载PDF
Encoderless Five-phase PMa-SynRM Drive System Based on Robust Torque-speed Estimator with Super-twisting Sliding Mode Control
13
作者 Ghada A.Abdel Aziz Rehan Ali Khan 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第1期54-62,共9页
In this paper,a robust torque speed estimator(RTSE)for linear parameter changing(LPC)system is proposed and designed for an encoderless five-phase permanent magnet assisted synchronous reluctance motor(5-phase PMa-Syn... In this paper,a robust torque speed estimator(RTSE)for linear parameter changing(LPC)system is proposed and designed for an encoderless five-phase permanent magnet assisted synchronous reluctance motor(5-phase PMa-SynRM).This estimator is utilized for estimating the rotor speed and the load torque as well as can solve the speed sensor fault problem,as the feedback speed information is obtained directly from the virtual sensor.In addition,this technique is able to enhance the 5-phase PMa-SynRM performance by estimating the load torque for the real time compensation.The stability analysis of the proposed estimator is performed via Schur complement along with Lyapunov analysis.Furthermore,for improving the 5-phase PMa-SynRM performance,five super-twisting sliding mode controllers(ST-SMCs)are employed with providing a robust response without the impacts of high chattering problem.A super-twisting sliding mode speed controller(ST-SMSC)is employed for controlling the PMa-SynRM rotor speed,and four super-twisting sliding mode current controllers(ST-SMCCs)are employed for controlling the 5-phase PMa-SynRM currents.The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed RTSE and the ST-SMSC with ST-SMCCs approach for a 750-W 5-phase PMa-SynRM under load disturbance,parameters variations,single open-phase fault,and adjacent two-phase open circuit fault conditions. 展开更多
关键词 Five-phase permanent magnet assisted synchronous reluctance motor Encoderless control Supertwisting sliding mode control Torque-speed estimator
下载PDF
Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer 被引量:9
14
作者 陈强 南余荣 +1 位作者 郑恒火 任雪梅 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期157-162,共6页
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ... A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method. 展开更多
关键词 permanent magnet synchronous motor chaotic system sliding mode control fuzzy extended stateobserver
下载PDF
Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy 被引量:3
15
作者 Esmaeil Ghaderi Hossein Tohidi Behnam Khosrozadeh 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期391-399,共9页
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th... The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG). 展开更多
关键词 Maximum power point tracking permanent magnet synchronous generator(PMSG) sliding mode control wind turbine
下载PDF
Sliding mode synchronization between uncertain Watts-Strogatz small-world spatiotemporal networks 被引量:3
16
作者 Shuang LIU Runze ZHANG +1 位作者 Qingyun WANG XiaoyanHE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第12期1833-1846,共14页
Based on the topological characteristics of small-world networks,a nonlinear sliding mode controller is designed to minimize the effects of internal parameter uncertainties.To qualify the effects of uncertain paramete... Based on the topological characteristics of small-world networks,a nonlinear sliding mode controller is designed to minimize the effects of internal parameter uncertainties.To qualify the effects of uncertain parameters in the response networks,some effective recognition rates are designed so as to achieve a steady value in the extremely fast simulation time period.Meanwhile,the Fisher-Kolmogorov and Burgers spatiotemporal chaotic systems are selected as the network nodes for constructing a drive and a response network,respectively.The simulation results confirm that the developed sliding mode could realize the effective synchronization problem between the spatiotemporal networks,and the outer synchronization is still achieved timely even when the connection probability of the small-world networks changes. 展开更多
关键词 synchronization sliding mode control small-world network parameter identification
下载PDF
Position Sensorless Control for Permanent Magnet Synchronous Motor Using Sliding Mode Observer 被引量:2
17
作者 陈益广 傅涛 李响 《Transactions of Tianjin University》 EI CAS 2005年第5期338-342,共5页
An approach of position sensorless control for permanent magnet synchronous motor ( PMSM) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted... An approach of position sensorless control for permanent magnet synchronous motor ( PMSM) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted. and the system is controlled by the digital signal proces- sor ( DSP) TMS320LF2407 according to the control theory of sliding mode observer. In order to achieve closed loop operation of the motor, the stator magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is esti- mated in real time and the estimated position is modified continuously. The simulation results indi- cate that the proposed observer has high precision in estimation of PMSM position and speed, and is more robust to the parametric variation and load torque disturbance. 展开更多
关键词 位置传感器 定位控制 永磁同步电机 滑动模式 数字信号处理
下载PDF
Finite-time sliding mode synchronization of chaotic systems
18
作者 倪骏康 刘崇新 +1 位作者 刘凯 刘凌 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期80-86,共7页
A new finite-time sliding mode control approach is presented for synchronizing two different topological structure chaotic systems. With the help of the Lyapunov method, the convergence property of the proposed contro... A new finite-time sliding mode control approach is presented for synchronizing two different topological structure chaotic systems. With the help of the Lyapunov method, the convergence property of the proposed control strategy is discussed in a rigorous manner. Furthermore, it is mathematically proved that our control strategy has a faster convergence speed than the conventional finite-time sliding mode control scheme. In addition, the proposed control strategy can ensure the finite-time synchronization between the master and the slave chaotic systems under internal uncertainties and external disturbances. Simulation results are provided to show the speediness and robustness of the proposed scheme. It is worth noticing that the proposed control scheme is applicable for secure communications. 展开更多
关键词 finite-time control sliding mode control chaos synchronization secure communication
下载PDF
Robust fuzzy sliding-mode control for T-S model based permanent magnet synchronous motor
19
作者 张细政 王耀南 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期68-73,共6页
A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly forme... A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller. 展开更多
关键词 PERMANENT MAGNET synchronOUS motor (PMSM) uncertain T-S nonlinear systems sliding-mode control fuzzy sliding surfaces linear matrix INEQUALITIES (LMIs)
下载PDF
A Simplified Sliding Mode Controlled Electronic Differential for an Electric Vehicle with Two Independent Wheel Drives 被引量:7
20
作者 Azeddine Draou 《Energy and Power Engineering》 2013年第6期416-421,共6页
This paper presents a simple sliding mode control strategy used for an electronic differential system for electric vehicle with two independent wheel drives. When a vehicle drives along a curved road lane, the speed o... This paper presents a simple sliding mode control strategy used for an electronic differential system for electric vehicle with two independent wheel drives. When a vehicle drives along a curved road lane, the speed of the inner wheel has to be different from that of the outer wheel in order to prevent the vehicle from vibrating and travelling an unsteady path. Because each wheel of this electrical vehicle has independent driving force, an electrical differential system is required to replace a gear differential system. However, it is difficult to analyse the nonlinear behaviour of the differential system in relation to the speed and steering angle, as well as vehicle structure. The proposed propulsion system consists of two permanent magnet synchronous machines that ensure the drive of the two back driving wheels. The proposed control structure called independent machines for speed control allows the achievement of an electronic differential which ensures the control of the vehicle behaviour on the road. It also allows to control, independently, every driving wheel to turn at different speeds in any curve. Analysis and simulation results of the proposed system are presented in this paper. 展开更多
关键词 Electric Vehicle sliding mode control Electronic Differential PERMANENT MAGNET synchronOUS Motor Multimachine Multiconverter System
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部