An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode ...An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.展开更多
The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critica...The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critical for image classifications for forest areas. The objective of this research is to assess the effectiveness of currently used spatial filtering methods for extracting with forest information related from Landsat 5 TM images. Five spatial filtering methods including low-pass filter, median filter, mean filter, sigma filter and enhanced self-adaptive filter were examined. A set of evaluation indices was designed to assess the ability of each denoising method for flatness, edge/boundary retention and enhancement. Based on the designed evaluation indices and visual assessment, it was found that sigma filter (D=1) and enhanced self-adaptive filter were the most effective denoising methods in classifying TM images for forest areas.展开更多
Color image enhancement is an active research field in image processing. Currently, many image enhancement methods are capable of enhancing the details of the color image. However, these methods only process the red, ...Color image enhancement is an active research field in image processing. Currently, many image enhancement methods are capable of enhancing the details of the color image. However, these methods only process the red, green and blue (RGB) color channels separately, which leads to color distortion easily. In order to overcome this problem, the paper presents an approach to integrate the quaternion theory into the traditional guided filter to obtain a quaternion guided filter (QGF). This method makes full use of the color information of an image to realize the holistic processing of RGB color channels. So as to preserve color information while enhancing details, this paper proposes a color image detail enhancement algorithm based on the QGF. Experimental results show that the proposed algorithm is effective in the applications of the color image detail enhancement, and enables image's edges to be more prominent and texture clearer while avoiding color distortion. Compared with the existing image enhancement methods, the proposed method achieves better enhancement performance in terms of the visual quality and the objective evaluating indicators.展开更多
基金Project(61573381)supported by the National Natural Science Foundation of ChinaProject(2012AA051601)supported by the National High-tech Research and Development Program of China
文摘An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.
文摘The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critical for image classifications for forest areas. The objective of this research is to assess the effectiveness of currently used spatial filtering methods for extracting with forest information related from Landsat 5 TM images. Five spatial filtering methods including low-pass filter, median filter, mean filter, sigma filter and enhanced self-adaptive filter were examined. A set of evaluation indices was designed to assess the ability of each denoising method for flatness, edge/boundary retention and enhancement. Based on the designed evaluation indices and visual assessment, it was found that sigma filter (D=1) and enhanced self-adaptive filter were the most effective denoising methods in classifying TM images for forest areas.
基金supported by the National Natural Science Foundation of China (61401425)
文摘Color image enhancement is an active research field in image processing. Currently, many image enhancement methods are capable of enhancing the details of the color image. However, these methods only process the red, green and blue (RGB) color channels separately, which leads to color distortion easily. In order to overcome this problem, the paper presents an approach to integrate the quaternion theory into the traditional guided filter to obtain a quaternion guided filter (QGF). This method makes full use of the color information of an image to realize the holistic processing of RGB color channels. So as to preserve color information while enhancing details, this paper proposes a color image detail enhancement algorithm based on the QGF. Experimental results show that the proposed algorithm is effective in the applications of the color image detail enhancement, and enables image's edges to be more prominent and texture clearer while avoiding color distortion. Compared with the existing image enhancement methods, the proposed method achieves better enhancement performance in terms of the visual quality and the objective evaluating indicators.