An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic pro...An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic prop- agation experiment is carried out in a slope environment. The pulse signal is received by the vertical line array, and the depth structure can be obtained. For the experimental data, the depth structures of pulse waveforms are different, which depends on the source range. For a source with unknown range, the depth structure of pulse waveform can be first obtained from the experimental data. Next, the depth structures of pulse waveforms in dif- ferent ranges are numerically calculated. After the process of correlating the experimental and simulated signals, the range corresponding to the maximum value of the correlation coefficient is the estimated source range. For the explosive sources in the experiment with two depths, the mean relative errors of range estimation are both less than 7%.展开更多
In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional me...In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional methods to detect P-wave first motions and locate AE hypocenters in three dimensions. In addition, we selected events located with sufficient accuracy(normally corresponding AE events of relatively larger energy, showing clear P-wave first motion and a higher signal-to-noise ratio in most channels) as template events. Then, the template events were used to scan and match other poorly located events in triggered event records or weak events in continuous records. Through crosscorrelation of the multi-channel waveforms between the template and the event to be detected, the weak signal was detected and located using a grid-searching algorithm(with the grid centered at the template hypocenter). In order to examine the performance of the approach, we calibrated the proposed method using experimental data of different rocks and different types of experiments. The results show that the proposed method can significantly improve the detection capability and location accuracy, and can be applied to various laboratory and in situ experiments, which use multi-channel AE monitoring with waveforms recorded in either triggering or continuous mode.展开更多
Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic dat...Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic data, matching seismic data with different ages and sources, 4-D seismic monitoring, and so on. The traditional match filtering method is subject to many restrictions and is usually difficult to overcome the impact of noise. Based on the traditional match filter, we propose the wavelet domain L1 norm optimal matching filter. In this paper, two different types of seismic data are decomposed to the wavelet domain, different detailed effective information is extracted for Ll-norm optimal matching, and ideal results are achieved. Based on the model test, we find that the L1 norm optimal matching filter attenuates the noise and the waveform, amplitude, and phase coherence of result signals are better than the conventional method. The field data test shows that, with our method, the seismic events in the filter results have better continuity which achieves the high precision seismic match requirements.展开更多
With the significant improvement of microgrid technology, microgrid has gained large-scale application.However, the existence of intermittent distributed generations, nonlinear loads and various electrical and electro...With the significant improvement of microgrid technology, microgrid has gained large-scale application.However, the existence of intermittent distributed generations, nonlinear loads and various electrical and electronic devices causes power quality problem in microgrid, especially in islanding mode. An accurate and fast disturbance detection method which is the premise of power quality control is necessary. Aiming at the end effect and the mode mixing of original Hilbert-Huang transform(HHT), an improved HHT with adaptive waveform matching extension is proposed in this paper. The innovative waveform matching extension method considers not only the depth of waveform, but also the rise time and fall time. Both simulations and field experiments have verified the correctness and validity of the improved HHT for power quality disturbance detection in microgrid.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012 and 41561144006
文摘An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic prop- agation experiment is carried out in a slope environment. The pulse signal is received by the vertical line array, and the depth structure can be obtained. For the experimental data, the depth structures of pulse waveforms are different, which depends on the source range. For a source with unknown range, the depth structure of pulse waveform can be first obtained from the experimental data. Next, the depth structures of pulse waveforms in dif- ferent ranges are numerically calculated. After the process of correlating the experimental and simulated signals, the range corresponding to the maximum value of the correlation coefficient is the estimated source range. For the explosive sources in the experiment with two depths, the mean relative errors of range estimation are both less than 7%.
基金funding support from Grant-in-Aid for Scientific Research(Grant No.19H00722)by Japan Society for the Promotion of Science(JSPS)。
文摘In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional methods to detect P-wave first motions and locate AE hypocenters in three dimensions. In addition, we selected events located with sufficient accuracy(normally corresponding AE events of relatively larger energy, showing clear P-wave first motion and a higher signal-to-noise ratio in most channels) as template events. Then, the template events were used to scan and match other poorly located events in triggered event records or weak events in continuous records. Through crosscorrelation of the multi-channel waveforms between the template and the event to be detected, the weak signal was detected and located using a grid-searching algorithm(with the grid centered at the template hypocenter). In order to examine the performance of the approach, we calibrated the proposed method using experimental data of different rocks and different types of experiments. The results show that the proposed method can significantly improve the detection capability and location accuracy, and can be applied to various laboratory and in situ experiments, which use multi-channel AE monitoring with waveforms recorded in either triggering or continuous mode.
基金sponsored by the Natural Science Foundation of China(No.41074075)Graduate Innovation Fund by Jilin University(No.20121070)
文摘Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic data, matching seismic data with different ages and sources, 4-D seismic monitoring, and so on. The traditional match filtering method is subject to many restrictions and is usually difficult to overcome the impact of noise. Based on the traditional match filter, we propose the wavelet domain L1 norm optimal matching filter. In this paper, two different types of seismic data are decomposed to the wavelet domain, different detailed effective information is extracted for Ll-norm optimal matching, and ideal results are achieved. Based on the model test, we find that the L1 norm optimal matching filter attenuates the noise and the waveform, amplitude, and phase coherence of result signals are better than the conventional method. The field data test shows that, with our method, the seismic events in the filter results have better continuity which achieves the high precision seismic match requirements.
基金supported by National High Technology Research and Development Program of China(863 Program)(No.2015AA050104)National Natural Science Foundation of China(No.51577068)
文摘With the significant improvement of microgrid technology, microgrid has gained large-scale application.However, the existence of intermittent distributed generations, nonlinear loads and various electrical and electronic devices causes power quality problem in microgrid, especially in islanding mode. An accurate and fast disturbance detection method which is the premise of power quality control is necessary. Aiming at the end effect and the mode mixing of original Hilbert-Huang transform(HHT), an improved HHT with adaptive waveform matching extension is proposed in this paper. The innovative waveform matching extension method considers not only the depth of waveform, but also the rise time and fall time. Both simulations and field experiments have verified the correctness and validity of the improved HHT for power quality disturbance detection in microgrid.