期刊文献+
共找到1,235篇文章
< 1 2 62 >
每页显示 20 50 100
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
1
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 particle swarm Algorithm CHAOTIC SEQUENCES self-adaptive STRATEGY MULTI-OBJECTIVE Optimization
下载PDF
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:10
2
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 particle swarm optimization Genetic algorithm Random inertia weight Multi-objective reservoir operation Reservoir group Panjiakou Reservoir
下载PDF
Weighted Particle Swarm Clustering Algorithm for Self-Organizing Maps 被引量:1
3
作者 Guorong Cui Hao Li +4 位作者 Yachuan Zhang Rongjing Bu Yan Kang Jinyuan Li Yang Hu 《Journal of Quantum Computing》 2020年第2期85-95,共11页
The traditional K-means clustering algorithm is difficult to determine the cluster number,which is sensitive to the initialization of the clustering center and easy to fall into local optimum.This paper proposes a clu... The traditional K-means clustering algorithm is difficult to determine the cluster number,which is sensitive to the initialization of the clustering center and easy to fall into local optimum.This paper proposes a clustering algorithm based on self-organizing mapping network and weight particle swarm optimization SOM&WPSO(Self-Organization Map and Weight Particle Swarm Optimization).Firstly,the algorithm takes the competitive learning mechanism of a self-organizing mapping network to divide the data samples into coarse clusters and obtain the clustering center.Then,the obtained clustering center is used as the initialization parameter of the weight particle swarm optimization algorithm.The particle position of the WPSO algorithm is determined by the traditional clustering center is improved to the sample weight,and the cluster center is the“food”of the particle group.Each particle moves toward the nearest cluster center.Each iteration optimizes the particle position and velocity and uses K-means and K-medoids recalculates cluster centers and cluster partitions until the end of the algorithm convergence iteration.After a lot of experimental analysis on the commonly used UCI data set,this paper not only solves the shortcomings of K-means clustering algorithm,the problem of dependence of the initial clustering center,and improves the accuracy of clustering,but also avoids falling into the local optimum.The algorithm has good global convergence. 展开更多
关键词 Self-organizing map weight particle swarm K-MEANS K-medoids global convergence
下载PDF
A new particle swarm optimization algorithm with random inertia weight and evolution strategy 被引量:1
4
作者 LEI Chong-min GAO Yue-lin DUAN Yu-hong 《通讯和计算机(中英文版)》 2008年第11期42-47,共6页
关键词 通信技术 计算机技术 粒子群优化算法 收敛速度 计算方法
下载PDF
Adaptive multi-feature tracking in particle swarm optimization based particle filter framework 被引量:7
5
作者 Miaohui Zhang Ming Xin Jie Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期775-783,共9页
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t... This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance. 展开更多
关键词 particle filter particle swarm optimization adaptive weight adjustment visual tracking
下载PDF
Improved particle swarm optimization algorithm for multi-reservoir system operation 被引量:2
6
作者 Jun ZHANG Zhen WU +1 位作者 Chun-tian CHENG Shi-qin ZHANG 《Water Science and Engineering》 EI CAS 2011年第1期61-73,共13页
In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimizati... In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm. 展开更多
关键词 particle swarm optimization self-adaptive exponential inertia weight coefficient multi-reservoir system operation hydroelectric power generation Minjiang Basin
下载PDF
Multi-objective particle swarm optimization by fusing multiple strategies 被引量:1
7
作者 XU Zhenxing ZHU Shuiran 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期284-299,共16页
To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes t... To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes three strategies.Firstly,the average crowding distance method is proposed,which takes into account the influence of individuals on the crowding distance and reduces the algorithm’s time complexity and computational cost,ensuring efficient external archive maintenance and improving the algorithm’s distribution.Secondly,the algorithm utilizes particle difference to guide adaptive inertia weights.In this way,the degree of disparity between a particle’s historical optimum and the population’s global optimum is used to determine the value of w.With different degrees of disparity,the size of w is adjusted nonlinearly,improving the algorithm’s convergence.Finally,the algorithm is designed to control the search direction by hierarchically selecting the globally optimal policy,which can avoid a single search direction and eliminate the lack of a random search direction,making the selection of the global optimal position more objective and comprehensive,and further improving the convergence of the algorithm.The MOPSO-MS is tested against seven other algorithms on the ZDT and DTLZ test functions,and the results show that the MOPSO-MS has significant advantages in terms of convergence and distributivity. 展开更多
关键词 multi-objective particle swarm optimization(MOPSO) spatially crowding congestion distance differential guidance weight hierarchical selection of global optimum
下载PDF
Optimal Power Flow Solution Using Particle Swarm Optimization Technique with Global-Local Best Parameters 被引量:4
8
作者 P. Umapathy C. Venkatasehsiah M. Senthil Arumugam 《Journal of Energy and Power Engineering》 2010年第2期46-51,共6页
This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in ... This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques. 展开更多
关键词 particle swarm optimization swarm intelligence optimal power flow solution inertia weight acceleration coefficient.
下载PDF
A New Class of Hybrid Particle Swarm Optimization Algorithm 被引量:3
9
作者 Da-Qing Guo Yong-Jin Zhao +1 位作者 Hui Xiong Xiao Li 《Journal of Electronic Science and Technology of China》 2007年第2期149-152,共4页
A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly dec... A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly decreasing inertia weight technique (LDIW) and the mutative scale chaos optimization algorithm (MSCOA) are combined with standard PSO, which are used to balance the global and local exploration abilities and enhance the local searching abilities, respectively. In order to evaluate the performance of the new method, three benchmark functions are used. The simulation results confirm the proposed algorithm can greatly enhance the searching ability and effectively improve the premature convergence. 展开更多
关键词 particle swarm optimization (PSO) inertia weight CHAOS SCALE premature convergence benchmark function.
下载PDF
Stability Prediction in Smart Grid Using PSO Optimized XGBoost Algorithm with Dynamic Inertia Weight Updation
10
作者 Adel Binbusayyis Mohemmed Sha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期909-931,共23页
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ... Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system. 展开更多
关键词 Smart Grid machine learning particle swarm optimization XGBoost dynamic inertia weight update
下载PDF
Research on Reactive Power Optimization of Offshore Wind Farms Based on Improved Particle Swarm Optimization
11
作者 Zhonghao Qian Hanyi Ma +5 位作者 Jun Rao Jun Hu Lichengzi Yu Caoyi Feng Yunxu Qiu Kemo Ding 《Energy Engineering》 EI 2023年第9期2013-2027,共15页
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p... The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm. 展开更多
关键词 Offshore wind farms improved particle swarm optimization reactive power optimization adaptive weight asynchronous learning factor voltage stability
下载PDF
Enhancement in Channel Equalization Using Particle Swarm Optimization Techniques
12
作者 D. C. Diana S. P. Joy Vasantha Rani 《Circuits and Systems》 2016年第12期4071-4084,共15页
This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities o... This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities of PSO are managed by the key parameter Inertia Weight (IW). A higher value leads to global search whereas a smaller value shifts the search to local which makes convergence faster. Different approaches are reported in literature to improve PSO by modifying inertia weight. This work investigates the performance of the existing PSO variants related to time varying inertia weight methods and proposes new strategies to improve the convergence and mean square error of channel equalizer. Also the position update method in PSO is modified to achieve better convergence in channel equalization. The simulation presents the enhanced performance of the proposed techniques in transversal and decision feedback models. The simulation results also analyze the superiority in linear and nonlinear channel conditions. 展开更多
关键词 Adaptive Channel Equalization Decision Feedback Equalizer Inertia weight Mean Square Error particle swarm Optimization
下载PDF
A Self-determined Evaluation Method for Science Popularization Based on IOWA Operator and Particle Swarm Optimization
13
作者 Tianlei Zang Yan Wang +1 位作者 Zhengyou He Qingquan Qian 《国际计算机前沿大会会议论文集》 2016年第1期27-29,共3页
With the increase of science popularization, evaluation of science popularization has become an urgent demand. Considering science popularization bases as independent agents, a self-determined evaluation approach for ... With the increase of science popularization, evaluation of science popularization has become an urgent demand. Considering science popularization bases as independent agents, a self-determined evaluation approach for science popularization using induced ordered weighted averaging (IOWA) operator and particle swarm optimization (PSO) is proposed in this paper.Firstly, six factors including science popularization personnel, space, fund,media, activity and influence are selected to construct an index system for science popularization evaluation. On this basis, the absolute dominance and relative dominance of evaluation indexes are used as induced components, and the prior order of the evaluation indexes is determined. Besides, the optimization model of index weighted vectors is established by IOWA operator, index weighted vectors are calculated by particle swarm optimization algorithm, and index weighted vectors and evaluation value vectors are obtain. Finally, the optimal evaluation vectors and evaluation results are given according to the Perron-Frobenius decision eigenvalve theorem . 展开更多
关键词 Science POPULARIZATION Self-determined evaluation Induced ORDERED weighted AVERAGING operator particle swarm optimization Perron-Frobenius decision eigenvalve THEOREM
下载PDF
Prediction-based Manufacturing Center Self-adaptive Demand Side Energy Optimization in Cyber Physical Systems 被引量:4
14
作者 SUN Xinyao WANG Xue +1 位作者 WU Jiangwei LIU Youda 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期488-495,共8页
Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufactur... Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufac^ring center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method. 展开更多
关键词 cyber physical systems manufacturing center self-adaptive demand side management particle swarm optimization
下载PDF
PSO-based Control Algorithm for Polarization Mode Dispersion Self-adaptive Compensation
15
作者 ZHU Jin-jun ZHANG Xiao-guang +1 位作者 DUAN Gao-yan WANG Qiu-guo 《Semiconductor Photonics and Technology》 CAS 2006年第4期217-223,256,共8页
Polarization mode dispersion(PMD) is considered to be the ultimate limitation in high-speed optical fiber communication systems. Establishing an effective control algorithm for adaptive PMD compensation is a challengi... Polarization mode dispersion(PMD) is considered to be the ultimate limitation in high-speed optical fiber communication systems. Establishing an effective control algorithm for adaptive PMD compensation is a challenging task, because PMD possesses the time-varying and statistical properties. The particle swarm optimization(PSO) algorithm is introduced into self-adaptive PMD compensation as feedback control algorithm. The experiment results show that PSO-based control algorithm has some unique features of rapid convergence to the global optimum without being trapped in local sub-optima and good robustness to noise in the optical fiber transmission line that has never been achieved in PMD compensation before. 展开更多
关键词 Polarization mode dispersion particle swarm optimization self-adaptive compensation
下载PDF
Novel Parameter Identification Method for Basis Weight Control Loop of Papermaking Process 被引量:3
16
作者 Yunzhu Shen Wei Tang Yungang Liu 《Paper And Biomaterials》 CAS 2023年第1期35-49,共15页
The basis weight control loop of the papermaking process is a non-linear system with time-delay and time-varying.It is impractical to identify a model that can restore the model of real papermaking process.Determining... The basis weight control loop of the papermaking process is a non-linear system with time-delay and time-varying.It is impractical to identify a model that can restore the model of real papermaking process.Determining a more accurate identification model is very important for designing the controller of the control system and maintaining the stable operation of the papermaking process.In this study,a strange nonchaotic particle swarm optimization(SNPSO)algorithm is proposed to identify the models of real papermaking processes,and this identification ability is significantly enhanced compared with particle swarm optimization(PSO).First,random particles are initialized by strange nonchaotic sequences to obtain high-quality solutions.Furthermore,the weight of linear attenuation is replaced by strange nonchaotic sequence and the time-varying acceleration coefficients and a mutation rule with strange nonchaotic characteristics are utilized in SNPSO.The above strategies effectively improve the global and local search ability of particles and the ability to escape from local optimization.To illustrate the effectiveness of SNPSO,step response data are used to identify the models of real industrial processes.Compared with classical PSO,PSO with timevarying acceleration coefficients(PSO-TVAC)and modified particle swarm optimization(MPSO),the simulation results demonstrate that SNPSO has stronger identification ability,faster convergence speed,and better robustness. 展开更多
关键词 basis weight control system PAPERMAKING system identification particle swarm optimization strange nonchaotic sequence
下载PDF
Research of stochastic weight strategy for extended particle swarm optimizer
17
作者 XU Jun-jie YUE Xin XIN Zhan-hong 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2008年第2期122-124,134,共4页
To improve the performance of extended particle swarm optimizer, a novel means of stochastic weight deployment is proposed for the iterative equation of velocity updation. In this scheme, one of the weights is specifi... To improve the performance of extended particle swarm optimizer, a novel means of stochastic weight deployment is proposed for the iterative equation of velocity updation. In this scheme, one of the weights is specified to a random number within the range of [0, 1] and the other two remain constant configurations. The simulations show that this weight strategy outperforms the previous deterministic approach with respect to success rate and convergence speed. The experiments also reveal that if the weight for global best neighbor is specified to a stochastic number, extended particle swarm optimizer achieves high and robust performance on the given multi-modal function. 展开更多
关键词 particle swarm optimization evolutionary computation stochastic weight function optimization
原文传递
Optimal strategy of searching FPD weights scanning matrix using GA-PSO
18
作者 严利民 顾裕灿 李建东 《Journal of Shanghai University(English Edition)》 CAS 2011年第4期292-296,共5页
This paper discusses a kind of optimal method used for searching flat panel display (FPD) scanning matrix. The method adopts bionic algorithm: genetic algorithm (GA) and particle swarm optimization (PSO) algori... This paper discusses a kind of optimal method used for searching flat panel display (FPD) scanning matrix. The method adopts bionic algorithm: genetic algorithm (GA) and particle swarm optimization (PSO) algorithm. The method using single GA is more time-consuming, and the search efficiency is low in later evolution; the PSO algorithm is easily falling into the local optimal solution and appears the premature convergent phenomenon. Hence, a hybrid approach of GAPSO is found to optimize the search for high grayscale weights scanning matrix. Finally in the acceptable time, it finds a weight scanning matrix (WSM) of 256 gray scales with Matlab, whose scanning efficiency reaches 94.73% and the linearity is very good. 展开更多
关键词 fiat panel display (FPD) weights scanning matrix (WSM) genetic algorithm (GA) particle swarm optimization (PSO) algorithm
下载PDF
多场景下基于AHP-EWM的人体健康状态评估模型研究 被引量:2
19
作者 火久元 王虹阳 +1 位作者 巨涛 胡军 《计算机工程》 CAS CSCD 北大核心 2024年第7期372-380,共9页
为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评... 为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评估模型。首先采集人体在运动、休息、工作/学习和娱乐等4种不同场景下的健康监测指标数据,构建相应的评估指标体系。然后分别根据评估指标计算出AHP和EWM权重,再采用量子粒子群优化(QPSO)算法对AHP和EWM中的主客观权重进行分配,以确保评价指标占比的客观性。最后通过模糊综合评价法对人体健康状态进行评估和量化,并利用实际监测数据对方法的可靠性和稳定性进行验证。实验结果表明,在4种场景下所提方法的综合得分分别为63.78、59.83、58.71和59.21,表明在不同场景下该模型都具有较好的准确性和稳定性。根据评估结果,对测试者的身体状态评价结果进行分析,并给出一些健康建议。所提模型可全面了解人体在不同场景下的健康状况,并为人们提供科学的健康指导,从而为健康管理和疾病预防提供科学依据。 展开更多
关键词 健康状态 多重场景 层次分析法 熵权法 量子粒子群优化算法 模糊综合评价法
下载PDF
基于正交试验的粒子群优化算法对火焰原子吸收光谱法分析金元素参数的优化
20
作者 王鹏 何涛 +7 位作者 白金峰 冯小娟 寇少磊 吕明超 赵浩 邓一荣 范慧 甘黎明 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第4期1045-1051,共7页
国内新一轮战略找矿行动全面启动,金矿产资源以其独特的稀有性和战略性具有特殊意义,其分析检测技术直接影响金元素的准确测试。以矿石中金元素为研究对象,采用正交试验设计方案对实验要素中的王水浓度、振荡时间和硫脲浓度进行方法测试... 国内新一轮战略找矿行动全面启动,金矿产资源以其独特的稀有性和战略性具有特殊意义,其分析检测技术直接影响金元素的准确测试。以矿石中金元素为研究对象,采用正交试验设计方案对实验要素中的王水浓度、振荡时间和硫脲浓度进行方法测试,测定结果相对误差为量化指标;按照层次分析法(AHP)中确定要素指标、建立矩阵、一致性判断步骤计算要素权重为(0.252,0.159,0.589),通过客观赋权(CRITIC)法计算正交试验数据的对比强度和冲突性,计算要素权重为(0.452,0.172,0.377),提出基于AHP-CRITIC混合加权算法对要素权重综合分析,其结果为(0.314,0.075,0.611);利用粒子群算法构建粒子多维空间,通过粒子的速度和方向属性迭代位置设计算法流程图,在迭代过程中结合混合加权算法结果通过线性递减的方式校正惯性权重,优化粒子在迭代初期和末期的学习因子,结合正交试验结果利用粒子群算法建立目标适应度函数,改进算法流程,应用MATLAB软件仿真模拟粒子群迭代过程,从全局各位置和方向逐渐向最优组合收敛,得到优化后的粒子群算法寻找原子吸收光谱法分析金元素的最佳条件参数为王水浓度10.62%、振荡时间32.8 min、硫脲浓度9.5 g·L^(-1)。粒子群优化算法验证结果表明,在分析条件最优化参数下对金标准分析物质GAu-15a、GAu-16b、GAu-17b、GAu-18b、GAu-19b、GAu-22a进行11次平行性试验测试,计算其平均值、相对误差和相对标准偏差指标,均满足《地质矿产实验室测试质量管理规范》,表明基于正交试验的粒子群优化算法对于原子吸收光谱法分析金元素参数的优化问题科学可行,验证了该优化算法的正确性和稳定性,对国内新一轮战略找矿事业提供新的研究思路。该方法提出混合加权算法结合进化计算技术对多目标参数寻求最优解,有望拓展于分析实验室其他领域的测试环境,更展望应用于寻求参数优化方向的科学研究中。 展开更多
关键词 层次分析法 CRITIC 混合加权 粒子群算法 原子吸收光谱法
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部