Background: Excessive elevation of arterial blood pressure(BP) at high altitude can be detrimental to our health due to acute mountain sickness(AMS) or some AMS symptoms. This prospective and observational study aimed...Background: Excessive elevation of arterial blood pressure(BP) at high altitude can be detrimental to our health due to acute mountain sickness(AMS) or some AMS symptoms. This prospective and observational study aimed to elucidate blood pressure changes induced by exposure to high-altitude hypoxia and the relationships of these changes with AMS prevalence, AMS severity, sleep quality and exercise condition in healthy young men.Methods: A prospective observational study was performed in 931 male young adults exposed to high altitude at 3,700 m(Lhasa) from low altitude(LA, 500 m). Blood pressure measurement and AMS symptom questionnaires were performed at LA and on day 1, 3, 5, and 7 of exposure to high altitude. Lake Louise criteria were used to diagnose AMS. Likewise, the Athens Insomnia Scale(AIS) and the Epworth Sleepiness Scale(ESS) were filled out at LA and on day 1, 3, and 7 of exposure to high altitude.Results: After acute exposure to 3,700 m, diastolic blood pressure(DBP) and mean arterial blood pressure(MABP) rose gradually and continually(P【0.05). Analysis showed a relationship with AMS for only MABP(P【0.05) but not for SBP and DBP(P】0.05). Poor sleeping quality was generally associated with higher SBP or DBP at high altitude, although inconsistent results were obtained at different time(P【0.05). SBP and Pulse BP increased noticeably after high-altitude exercise(P【0.05).Conclusions: Our data demonstrate notable blood pressure changes under exposure to different high-altitude conditions: 1) BP increased over time. 2) Higher BP generally accompanied poor sleeping quality and higher incidence of AMS. 3) SBP and Pulse BP were higher after high-altitude exercise. Therefore, we should put more effort into monitoring BP after exposure to high altitude in order to guard against excessive increases in BP.展开更多
This study analyzed the trends in extreme high temperature in Southwest China based on the observed daily maximum temperature and average temperature data from 410 Chinese stations recently released by the China Meteo...This study analyzed the trends in extreme high temperature in Southwest China based on the observed daily maximum temperature and average temperature data from 410 Chinese stations recently released by the China Meteorological Administration.The authors found that the trends in extreme high temperature at different altitudes of Southwest China exhibit staged variations during a recent 50-year period(1961–2014).The trends in mean temperature and maximum temperature also exhibit phase variation.All temperature-related variables increase gently during the period 1975–94,whereas they increase dramatically during the recent period of 1995–2014,with a rate that is approximately two to ten times more than that during 1975–94.In addition,the trends in mean temperature,maximum temperature,and the frequency of extreme high temperature in the low altitudes transit from negative to positive in the two periods,while they increase dramatically in the mid-and high-altitude areas during 1995–2014,the well-known global warming hiatus period.In particular,the maximum temperature increases much faster than that of average temperature.This result implies that the regional temperature trend could be apparently different from the global mean temperature change.展开更多
Monitoring and analyzing changes in the extent of cultivated land may inform strategic decisions on issues of environmental and food security.The dry cropland area of 12000 km^2in the Three Gorges Reservoir Region(TGR...Monitoring and analyzing changes in the extent of cultivated land may inform strategic decisions on issues of environmental and food security.The dry cropland area of 12000 km^2in the Three Gorges Reservoir Region(TGRR)of China is essential for feeding the local population of^20 million,but is highly prone to soil erosion,leading to the delivery of excessive amounts of sediment and associated pollutants to the Three Gorges Reservoir(TGR),and causing serious eco-environmental consequences.Against this background,this paper used Landsat images and a digital elevation model to analyze the altitudinal distribution of,and dynamic changes in,the area of dry cropland during the period 1990 to 2015.The results suggest that dry cropland was mainly distributed in the elevation range of 200-600 m.The dry cropland area decreased from 12525.37 km^2to 11796.27 km^2during the 25-year study period,including a particularly significant decrease in the rate of decrease from 6.93 km^2/yr to 43.99 km^2/yr after 2000.The largest decline in the dry cropland area occurred in the elevation range of 600-900 m.The transformations between dry cropland and forest revealed the impact of the TGR operation on the extent of dry cropland.A total of 528.79 km^2of dry cropland with slopes>25°were converted to forest after 2000,whereas a total of 642 km^2of forest was converted to dry cropland during the study period,and these conversions mainly occurred between the elevation of 200–900 m.These spatiotemporal changes in the dry cropland area are likely to raise new issues concerning food security in the TGRR.展开更多
Annual mass balance is an important factor that reflects glacier change and glacier meltwater resources.In this study,we analyzed the changes in glacier area,snow line altitude(SLA)and surface elevation in theány...Annual mass balance is an important factor that reflects glacier change and glacier meltwater resources.In this study,we analyzed the changes in glacier area,snow line altitude(SLA)and surface elevation in theányêmaqên Mountain region using multisource remote sensing data.Then,the annual mass balance of two glaciers was reconstructed by using SLA-mass-balance gradient method.The results showed that the glacier area in theányêmaqên Mountains decreased by 29.4 km2from 1985 to 2017.The average SLAs of the Halong Glacier and Yehelong Glacier were approximately 5290 m and 5188 m,respectively.The glacier mass balance for the two glaciers from 1990 to 2020 was-0.71 m w.e.a^(-1) and-0.63 m w.e.a^(-1),respectively.Our results indicate that SLA is an important indicator of glacier changes,and a long sequence of SLAs can more accurately reconstruct the glacier mass balance of the glacier.The mean annual glacial meltwater-fed streamflow is 1.45×10^(7)m^(3) and 1.12×10^(7)m^(3),respectively.Sensitivity analysis indicates that summer air temperature plays a leading role in regard to the influential climatic factors of glacial retreat in theányêmaqên Mountains.This highlights the potential of the methodology for application on reconstructing annual glacier surface mass balance at larger scales without direct measurements.展开更多
Background: The fragile landscapes of the Himalayan region are highly susceptible to natural hazards, and there is ongoing concern about current and potential climate change impacts. This study provides background in...Background: The fragile landscapes of the Himalayan region are highly susceptible to natural hazards, and there is ongoing concern about current and potential climate change impacts. This study provides background information on India's Western Himalayas and reviews evidence of warming as well as variability in precipitation and extreme events.Methods: Understanding and anticipating the impacts of climate change on Himalayan forest ecosystems and the services they provide to people are critical. Efforts to develop and implement effective policies and management strategies for climate change mitigation and adaptation requires particular new research initiatives. The various studies initiated and conducted in the region are compiled here.Results: Several new initiatives taken by the Himalayan Forest Research Institute in Shimla are described. This includes new permanent observational field studies, some with mapped trees, in high altitude transitional zones for continuous monitoring of vegetation response. We have also presented new strategies for mitigating potential climate change effects in Himalayan forest ecosystems.Conclusions: Assessment of the ecological and genetic diversity of the Himalayan conifers is required to evaluate potential responses to changing climatic conditions. Conservation strategies for the important temperate medicinal plants need to be developed. The impact of climate change on insects and pathogens in the Himalayas also need to be assessed. Coordinated efforts are necessary to develop effective strategies for adaptation and mitigation.展开更多
This research quantifies lake level variations in the Siling Co, Co'e and Bangor Co salt lakes in Central Tibet from 1976 to 2010, and most notably for the 2000-2010 periods. In particular, the effects of differen...This research quantifies lake level variations in the Siling Co, Co'e and Bangor Co salt lakes in Central Tibet from 1976 to 2010, and most notably for the 2000-2010 periods. In particular, the effects of different water replenishment modes on the lakes have been analyzed. Here we have provided new evidences for climate warming and accelerated glacial ablation on the Central Tibetan Plateau from 2000 to 2010. Based on fieldwork involving Differential Global Positioning System (DGPS) surveying and Remote Sensing (RS) interpretations of the lake area, we have drawn the following conclusions. (1) From 1976 to 2010, the process of lake level variation in Siling Co can be divided into two stages. From 1976 to 2000, the lake level rose 4.3 m in a steady fashion (from 4530 to 4534.3 m); the rise rate was 0.18 m/a. From 2000 to 2010, the lake level rapidly rose 8.2 m (from 4534.3 to 4542.5 m), with a dramatically higher rise rate of 0.82 m/a. Compared with the rapidly increasing lake level of Siling Co from 2000 to 2010, the fluctuations observed at Co'e and Bangor Co were smooth and inconspicuous. (2) From 1976 to 2009, the lake area of Siling Co experienced a steady-rapid-steady expansion pattern. The lake area of Siling Co increased 656.64 km2 in the 34 years to 2010, a proportional growth of 39.4%. This was particularly significant in the 2000-2010 period, when the lake area of Siling Co increased by 549.77 km2, a proportional growth of 30.6%. (3) According to correlation analysis, the rise in regional temperatures, which has led to the ablation of glaciers, is the main reason for the rapid rise in Siling Co lake levels in the 10 years to 2010. During this period, Siling Co rose approximately 8 m as the direct result of glacial melting. An increase in precipitation in the Siling Co catchment area is the secondary factor. This contrasts with Bangor Co, where the dominant factor in lake level change is the long-term increase in precipitation; here, the increasing temperature is the secondary factor.展开更多
Bush encroachment is widely distributed in arid and semi-arid regions, and it has a serious impact on livestock production, especially in Africa where livestock is a primary source for the livelihoods of many people. ...Bush encroachment is widely distributed in arid and semi-arid regions, and it has a serious impact on livestock production, especially in Africa where livestock is a primary source for the livelihoods of many people. In this study, methods of supervised classification and decision tree classification, and indexes of a land use change significance index(Ci) and a single land use dynamic degree, were applied to remote sensing imagery of Ethiopia for 1986–2016. The results show the dynamic characteristics of grassland bush encroachment in low altitude areas(pastures 1500 m above sea level) of Ethiopia in the 30 year period studied. The results revealed several interesting features of this phenomenon.(1) The area of bush encroachment showed an increasing trend, with a maximum of 3.74×10^3 km^2 in 2003, which represented 68.97% of the total area, and declined slightly from 2003~2016.(2) Among classification types, the area of severe shrub grassland was the largest, accounting for 28.36–49.10% of the total area, while the area of moderate bush encroachment accounted for 9.77–16.68%, and slight bush encroachment accounted for 5.52–7.57%.(3) The expansion rate of shrubby grassland was 0.74% for the 30 year period, while the average annual expansion rate was 2.16% for the 8 years from 1995–2003.(4) Forest land and grassland were the two main land use types of shrub grassland transformation in low altitude areas and bush encroachment changed large amounts of forest land into grassland due to shrub grassland management. The results of this study provide basic data for revealing the impacts of development processes on subsequent bush encroachment and can inform better management for the sustainable development of grasslands in low altitude systems.展开更多
Two models are used to simulate the high-altitude permafrost distribution on the Qinghai-Xizang Plateau. The two models are the “altitude model”, a Gaussian distribution function used to describe the latitudinal zon...Two models are used to simulate the high-altitude permafrost distribution on the Qinghai-Xizang Plateau. The two models are the “altitude model”, a Gaussian distribution function used to describe the latitudinal zonation of permafrost based on the three-dimensional rules of high-altitude permafrost, and the “frost number model”, a dimensionless ratio defined by manipulation of freezing and thawing degree-day sums. The results show that the “altitude model” can simulate the high-altitude permafrost distribution under present climate conditions accurately. Given the essential hypotheses and using the GCM scenarios from HADCM2, the “altitude model” is used for predicting the permafrost distribution change on the Qinghai-Xizang Plateau. The results show that the permafrost on the plateau will not change significantly during 20–50 a, the percentage of the total disappeared area will not be over 19%. However, by the year 2099, if the air temperature increases by an average of 2.91°C on the plateau, the decrease in the area of permafrost will exceed 58%—almost all the permafrost in the southern plateau and in the eastern plateau will disappear.展开更多
Highland barley(Hordeum vulgare Linn.cv.nudum Hook.f.)is the principal cereal crop over the Tibetan Plateau(TP).The response of highland barely to climate change in the past decades,especially in terms of yields still...Highland barley(Hordeum vulgare Linn.cv.nudum Hook.f.)is the principal cereal crop over the Tibetan Plateau(TP).The response of highland barely to climate change in the past decades,especially in terms of yields still remains uncertain.In this study,its responses to climate change were investigated using daily weather data and agriculture data during 1961–2018.The results showed that the annual mean air temperature over the TP increased at 0.33°C per decade during 1961–2018,and the rate of warming increased with altitude,reaching 0.41°C per decade at altitudes of 4500–4700 m.The growing degree days(GDDs)increased by 9.6%during 2011–2018 compared with the 1960s,whereas low temperature degree days(LDDs)decreased by 40.3%over the same period,indicating that the thermal conditions for highland barley cultivation have improved.A strong relationship was observed between the yield of highland barley and LDDs(−0.76,p<0.001)than GDDs(0.58,p<0.001)in Xizang,where sufficient irrigation water is available from the melting of snow cover or glaciers.In Sichuan,with abundant precipitation,significant correlations were noticed between county-level barley yield and GDDs and LDDs(0.60,p<0.001;−0.65,p<0.001).In Qinghai,the dry regions,county-level yields were influenced significantly by temperature and precipitation.These results indicated that climate warming was beneficial to highland barley yield in most region of the TP,mainly due to decreased LDDs.The potential altitude at which highland barley cultivation is feasible increased by approximately 280–484 m during 2016–2018,compared with 1981–1983.In Xizang,highland barley could be cultivated up to an altitude of 4507 m a.s.l.between 2016 and 2018,and it increased to 4179 m a.s.l.in Qinghai.These results could help local government to take actions to adapt to global warming and improve food security.展开更多
基金supported by grants from the Special Health Research Project, Ministry of Health of China (201002012)
文摘Background: Excessive elevation of arterial blood pressure(BP) at high altitude can be detrimental to our health due to acute mountain sickness(AMS) or some AMS symptoms. This prospective and observational study aimed to elucidate blood pressure changes induced by exposure to high-altitude hypoxia and the relationships of these changes with AMS prevalence, AMS severity, sleep quality and exercise condition in healthy young men.Methods: A prospective observational study was performed in 931 male young adults exposed to high altitude at 3,700 m(Lhasa) from low altitude(LA, 500 m). Blood pressure measurement and AMS symptom questionnaires were performed at LA and on day 1, 3, 5, and 7 of exposure to high altitude. Lake Louise criteria were used to diagnose AMS. Likewise, the Athens Insomnia Scale(AIS) and the Epworth Sleepiness Scale(ESS) were filled out at LA and on day 1, 3, and 7 of exposure to high altitude.Results: After acute exposure to 3,700 m, diastolic blood pressure(DBP) and mean arterial blood pressure(MABP) rose gradually and continually(P【0.05). Analysis showed a relationship with AMS for only MABP(P【0.05) but not for SBP and DBP(P】0.05). Poor sleeping quality was generally associated with higher SBP or DBP at high altitude, although inconsistent results were obtained at different time(P【0.05). SBP and Pulse BP increased noticeably after high-altitude exercise(P【0.05).Conclusions: Our data demonstrate notable blood pressure changes under exposure to different high-altitude conditions: 1) BP increased over time. 2) Higher BP generally accompanied poor sleeping quality and higher incidence of AMS. 3) SBP and Pulse BP were higher after high-altitude exercise. Therefore, we should put more effort into monitoring BP after exposure to high altitude in order to guard against excessive increases in BP.
基金supported by the National Natural Science Foundation of China grant numbers 41722504 and 41975116the Youth Innovation Promotion Association of the Chinese Academy of Sciences grant number 2016074。
文摘This study analyzed the trends in extreme high temperature in Southwest China based on the observed daily maximum temperature and average temperature data from 410 Chinese stations recently released by the China Meteorological Administration.The authors found that the trends in extreme high temperature at different altitudes of Southwest China exhibit staged variations during a recent 50-year period(1961–2014).The trends in mean temperature and maximum temperature also exhibit phase variation.All temperature-related variables increase gently during the period 1975–94,whereas they increase dramatically during the recent period of 1995–2014,with a rate that is approximately two to ten times more than that during 1975–94.In addition,the trends in mean temperature,maximum temperature,and the frequency of extreme high temperature in the low altitudes transit from negative to positive in the two periods,while they increase dramatically in the mid-and high-altitude areas during 1995–2014,the well-known global warming hiatus period.In particular,the maximum temperature increases much faster than that of average temperature.This result implies that the regional temperature trend could be apparently different from the global mean temperature change.
基金This work was supported by the National Natural Science Foundation of China(41201273,41771321,and 41571278)the Science and Technology Service Network Initiative of CAS(KFJ-SWSTS-175)The contribution of ALC was funded by the UK Biotechnology and Biological Sciences Research Council(BBSRC)institute strategic programme grant BBS/E/C/000I0330(Soil to Nutrition project 3).
文摘Monitoring and analyzing changes in the extent of cultivated land may inform strategic decisions on issues of environmental and food security.The dry cropland area of 12000 km^2in the Three Gorges Reservoir Region(TGRR)of China is essential for feeding the local population of^20 million,but is highly prone to soil erosion,leading to the delivery of excessive amounts of sediment and associated pollutants to the Three Gorges Reservoir(TGR),and causing serious eco-environmental consequences.Against this background,this paper used Landsat images and a digital elevation model to analyze the altitudinal distribution of,and dynamic changes in,the area of dry cropland during the period 1990 to 2015.The results suggest that dry cropland was mainly distributed in the elevation range of 200-600 m.The dry cropland area decreased from 12525.37 km^2to 11796.27 km^2during the 25-year study period,including a particularly significant decrease in the rate of decrease from 6.93 km^2/yr to 43.99 km^2/yr after 2000.The largest decline in the dry cropland area occurred in the elevation range of 600-900 m.The transformations between dry cropland and forest revealed the impact of the TGR operation on the extent of dry cropland.A total of 528.79 km^2of dry cropland with slopes>25°were converted to forest after 2000,whereas a total of 642 km^2of forest was converted to dry cropland during the study period,and these conversions mainly occurred between the elevation of 200–900 m.These spatiotemporal changes in the dry cropland area are likely to raise new issues concerning food security in the TGRR.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,Grant No.2019QZKK0205)the National Natural Science Foundation of China(grant No.42071077,42171148)the Fundamental Research Funds for the Central Universities(lzujbky-2021-sp11)。
文摘Annual mass balance is an important factor that reflects glacier change and glacier meltwater resources.In this study,we analyzed the changes in glacier area,snow line altitude(SLA)and surface elevation in theányêmaqên Mountain region using multisource remote sensing data.Then,the annual mass balance of two glaciers was reconstructed by using SLA-mass-balance gradient method.The results showed that the glacier area in theányêmaqên Mountains decreased by 29.4 km2from 1985 to 2017.The average SLAs of the Halong Glacier and Yehelong Glacier were approximately 5290 m and 5188 m,respectively.The glacier mass balance for the two glaciers from 1990 to 2020 was-0.71 m w.e.a^(-1) and-0.63 m w.e.a^(-1),respectively.Our results indicate that SLA is an important indicator of glacier changes,and a long sequence of SLAs can more accurately reconstruct the glacier mass balance of the glacier.The mean annual glacial meltwater-fed streamflow is 1.45×10^(7)m^(3) and 1.12×10^(7)m^(3),respectively.Sensitivity analysis indicates that summer air temperature plays a leading role in regard to the influential climatic factors of glacial retreat in theányêmaqên Mountains.This highlights the potential of the methodology for application on reconstructing annual glacier surface mass balance at larger scales without direct measurements.
文摘Background: The fragile landscapes of the Himalayan region are highly susceptible to natural hazards, and there is ongoing concern about current and potential climate change impacts. This study provides background information on India's Western Himalayas and reviews evidence of warming as well as variability in precipitation and extreme events.Methods: Understanding and anticipating the impacts of climate change on Himalayan forest ecosystems and the services they provide to people are critical. Efforts to develop and implement effective policies and management strategies for climate change mitigation and adaptation requires particular new research initiatives. The various studies initiated and conducted in the region are compiled here.Results: Several new initiatives taken by the Himalayan Forest Research Institute in Shimla are described. This includes new permanent observational field studies, some with mapped trees, in high altitude transitional zones for continuous monitoring of vegetation response. We have also presented new strategies for mitigating potential climate change effects in Himalayan forest ecosystems.Conclusions: Assessment of the ecological and genetic diversity of the Himalayan conifers is required to evaluate potential responses to changing climatic conditions. Conservation strategies for the important temperate medicinal plants need to be developed. The impact of climate change on insects and pathogens in the Himalayas also need to be assessed. Coordinated efforts are necessary to develop effective strategies for adaptation and mitigation.
基金supported by the Knowledge Innovating Program of Chinese Academy of Sciences (KZCX2-YW-12)the National Basic Research Program of China (2011CB403106)the National Natural Science Foundation of China (40940018)
文摘This research quantifies lake level variations in the Siling Co, Co'e and Bangor Co salt lakes in Central Tibet from 1976 to 2010, and most notably for the 2000-2010 periods. In particular, the effects of different water replenishment modes on the lakes have been analyzed. Here we have provided new evidences for climate warming and accelerated glacial ablation on the Central Tibetan Plateau from 2000 to 2010. Based on fieldwork involving Differential Global Positioning System (DGPS) surveying and Remote Sensing (RS) interpretations of the lake area, we have drawn the following conclusions. (1) From 1976 to 2010, the process of lake level variation in Siling Co can be divided into two stages. From 1976 to 2000, the lake level rose 4.3 m in a steady fashion (from 4530 to 4534.3 m); the rise rate was 0.18 m/a. From 2000 to 2010, the lake level rapidly rose 8.2 m (from 4534.3 to 4542.5 m), with a dramatically higher rise rate of 0.82 m/a. Compared with the rapidly increasing lake level of Siling Co from 2000 to 2010, the fluctuations observed at Co'e and Bangor Co were smooth and inconspicuous. (2) From 1976 to 2009, the lake area of Siling Co experienced a steady-rapid-steady expansion pattern. The lake area of Siling Co increased 656.64 km2 in the 34 years to 2010, a proportional growth of 39.4%. This was particularly significant in the 2000-2010 period, when the lake area of Siling Co increased by 549.77 km2, a proportional growth of 30.6%. (3) According to correlation analysis, the rise in regional temperatures, which has led to the ablation of glaciers, is the main reason for the rapid rise in Siling Co lake levels in the 10 years to 2010. During this period, Siling Co rose approximately 8 m as the direct result of glacial melting. An increase in precipitation in the Siling Co catchment area is the secondary factor. This contrasts with Bangor Co, where the dominant factor in lake level change is the long-term increase in precipitation; here, the increasing temperature is the secondary factor.
基金China–Africa Joint Research Centre Project of the Chinese Academy of Sciences(SAJC201610)Science and Technology partnership ProgramMinistry of Science and Technology of China(KY201702010)
文摘Bush encroachment is widely distributed in arid and semi-arid regions, and it has a serious impact on livestock production, especially in Africa where livestock is a primary source for the livelihoods of many people. In this study, methods of supervised classification and decision tree classification, and indexes of a land use change significance index(Ci) and a single land use dynamic degree, were applied to remote sensing imagery of Ethiopia for 1986–2016. The results show the dynamic characteristics of grassland bush encroachment in low altitude areas(pastures 1500 m above sea level) of Ethiopia in the 30 year period studied. The results revealed several interesting features of this phenomenon.(1) The area of bush encroachment showed an increasing trend, with a maximum of 3.74×10^3 km^2 in 2003, which represented 68.97% of the total area, and declined slightly from 2003~2016.(2) Among classification types, the area of severe shrub grassland was the largest, accounting for 28.36–49.10% of the total area, while the area of moderate bush encroachment accounted for 9.77–16.68%, and slight bush encroachment accounted for 5.52–7.57%.(3) The expansion rate of shrubby grassland was 0.74% for the 30 year period, while the average annual expansion rate was 2.16% for the 8 years from 1995–2003.(4) Forest land and grassland were the two main land use types of shrub grassland transformation in low altitude areas and bush encroachment changed large amounts of forest land into grassland due to shrub grassland management. The results of this study provide basic data for revealing the impacts of development processes on subsequent bush encroachment and can inform better management for the sustainable development of grasslands in low altitude systems.
基金Project "Fundamental Research of Cryosphere" supported by the Chinese Academy of Sciences.
文摘Two models are used to simulate the high-altitude permafrost distribution on the Qinghai-Xizang Plateau. The two models are the “altitude model”, a Gaussian distribution function used to describe the latitudinal zonation of permafrost based on the three-dimensional rules of high-altitude permafrost, and the “frost number model”, a dimensionless ratio defined by manipulation of freezing and thawing degree-day sums. The results show that the “altitude model” can simulate the high-altitude permafrost distribution under present climate conditions accurately. Given the essential hypotheses and using the GCM scenarios from HADCM2, the “altitude model” is used for predicting the permafrost distribution change on the Qinghai-Xizang Plateau. The results show that the permafrost on the plateau will not change significantly during 20–50 a, the percentage of the total disappeared area will not be over 19%. However, by the year 2099, if the air temperature increases by an average of 2.91°C on the plateau, the decrease in the area of permafrost will exceed 58%—almost all the permafrost in the southern plateau and in the eastern plateau will disappear.
基金supported by National Key Technology R&D Program of China(2019YFD1002204)and S&T Development Fund of CAMS.
文摘Highland barley(Hordeum vulgare Linn.cv.nudum Hook.f.)is the principal cereal crop over the Tibetan Plateau(TP).The response of highland barely to climate change in the past decades,especially in terms of yields still remains uncertain.In this study,its responses to climate change were investigated using daily weather data and agriculture data during 1961–2018.The results showed that the annual mean air temperature over the TP increased at 0.33°C per decade during 1961–2018,and the rate of warming increased with altitude,reaching 0.41°C per decade at altitudes of 4500–4700 m.The growing degree days(GDDs)increased by 9.6%during 2011–2018 compared with the 1960s,whereas low temperature degree days(LDDs)decreased by 40.3%over the same period,indicating that the thermal conditions for highland barley cultivation have improved.A strong relationship was observed between the yield of highland barley and LDDs(−0.76,p<0.001)than GDDs(0.58,p<0.001)in Xizang,where sufficient irrigation water is available from the melting of snow cover or glaciers.In Sichuan,with abundant precipitation,significant correlations were noticed between county-level barley yield and GDDs and LDDs(0.60,p<0.001;−0.65,p<0.001).In Qinghai,the dry regions,county-level yields were influenced significantly by temperature and precipitation.These results indicated that climate warming was beneficial to highland barley yield in most region of the TP,mainly due to decreased LDDs.The potential altitude at which highland barley cultivation is feasible increased by approximately 280–484 m during 2016–2018,compared with 1981–1983.In Xizang,highland barley could be cultivated up to an altitude of 4507 m a.s.l.between 2016 and 2018,and it increased to 4179 m a.s.l.in Qinghai.These results could help local government to take actions to adapt to global warming and improve food security.