Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is establish...Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is established by the secondary development technology based on the platform of the general finite element program, and a reasonable load pattern is used in its spatial structural analysis, by which its path of force transference and stress distribution are obtained. Matched with the spatial main cable, the tangency point correction method is also discussed. The results show that the lateral wall stress of the saddle groove is higher than the stress within the wall due to the role of lateral forces in the finished bridge state; the horizontal volume force of the main cable can generate a gradient distributed vertical extrusion pressure on the saddle clamping device and the main saddle body; the geometric nonlinear effect of the self- anchored suspension bridge cable system in the construction process is significant, which can be reflected in the spatial tangent point position of the main cable with the main saddle changes a lot from free cable to finished cable.展开更多
The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite...The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.展开更多
A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. ...A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge.展开更多
The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspens...The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.展开更多
Based on the variational prineiple of incomplete generalized potential energy with large deflection, the vertical nonlinear vibrational differential equation of self-anchored suspension bridge is presented by taking t...Based on the variational prineiple of incomplete generalized potential energy with large deflection, the vertical nonlinear vibrational differential equation of self-anchored suspension bridge is presented by taking the effect of coupling of flexural and axial action into consideration. The linear vertical equation is obtained by omitting the nonlinear term, and the pseudo excitation method(PEM). Taking the self-anchored concrete suspension bridge over Lanqi Songhua river for an example, the expected peak responses of main beam, towers and cables are calculated. And the seismic spatial effects on vertical seismic response of self-anchored suspension bridges are discussed.展开更多
Self-anchored suspension bridge is composed of tower and its foundation, stiffened beam, main cable, sling, side pier and its foundation, auxiliary pier and its foundation. The performance and importance of the compon...Self-anchored suspension bridge is composed of tower and its foundation, stiffened beam, main cable, sling, side pier and its foundation, auxiliary pier and its foundation. The performance and importance of the components of the bridge are different. The main tower of self-anchored suspension bridge is a very important component. Once the injury and damage occur under earthquake, it is not only difficult to inspect and repair, let alone replace. This paper calculates the seismic performance of self-anchored suspen-sion bridge steel tower based on the application of Wuhan Gutian Bridge steel tower.展开更多
The equations for fiber suspensions in an evolving mixing layer were solved by the spectral method, and the trajectory and orientation of fibers were calculated based on the slender body theory. The calculated spatial...The equations for fiber suspensions in an evolving mixing layer were solved by the spectral method, and the trajectory and orientation of fibers were calculated based on the slender body theory. The calculated spatial and orientation distributions of fibers are consistent with the experimental ones that were performed in this paper. The relationship between the microstructure of fibers and additional stress was examined. The results show that the spatial and orientation distributions of fibers are heterogeneous because of the influence of coherent vortices in the flow, which leads to the heterogeneity of the additional stress. The degree of heterogeneity increases with the increasing of St number and fiber aspect ratio. The fibers in the flow make the momentum loss thickness of the mixing layer thicker and accelerate the vorticity dispersion.展开更多
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit...A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.展开更多
The pH dependence of the extrapolated shear yield stress for Alcoa A16 a-Al2O3 suspensions at the powder volume fraction of 0.27 with and without addition of both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) ...The pH dependence of the extrapolated shear yield stress for Alcoa A16 a-Al2O3 suspensions at the powder volume fraction of 0.27 with and without addition of both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) each at fixed 0.18% of the powder mass was studied. With the polymer added, the full deflocculation of the suspension shifts from about pH=4 to around pH=1.5, at which the minimum value of shear yield stress is higher than that at pH=4. The addition of both PVA and PEG was found to prevent the filter cake from cracking.展开更多
[Objectives]To explore the antidepressant effect of Shenwei Ningyu Tablet,a new antidepressant traditional Chinese medicine,on rat chronic stress depression model and mouse tail suspension models.[Methods]Rat chronic ...[Objectives]To explore the antidepressant effect of Shenwei Ningyu Tablet,a new antidepressant traditional Chinese medicine,on rat chronic stress depression model and mouse tail suspension models.[Methods]Rat chronic stress model:except for the normal group,the rats in other groups were given corresponding chronic stress,and administered by gavage 1 h before modeling,for a total of 21 d.The changes of each indicator before and after the experiment were observed through the body weight change,the sugar water test,and open field test.The relevant hormone levels were detected by radioimmunoassay.Mouse tail suspension depression model:after continuous administration for 7 d,the activity times was recorded with the mouse automatic recorder,and the mouse immobility time was recorded after tail suspension,to explore the effects of each administration group on the tail suspension immobility time of mice.[Results]Chronic stress depression model:21 d after modeling,compared with the normal group,rats in the model group exhibited significantly reduced body weight,sucrose preference index,and horizontal and vertical movement scores(P<0.05).Compared with the model group,the low-dose Shenwei Ningyu Tablets group had significant differences in the sugar water test,horizontal and vertical movement scores(P<0.05).In addition,all three dose groups of Shenwei Ningyu Tablets could effectively reduce the content of CRF in chronic stress model rats,and the low dose group could significantly reduce the ACTH level in model rats(P<0.05).Mouse tail suspension depression model:the immobility time after tail suspension in each administration group was significantly different from that in the model group(P<0.05).[Conclusions]Shenwei Ningyu Tablets has a certain anti-depression effect on both the rat chronic stress depression model and the mouse tail suspension depression model.展开更多
This paper introduced two methods of automotive suspension springs stress analysis, the FEA (finite element analysis) and the experimental measurement, through which the maximum stress is found located where the cyl...This paper introduced two methods of automotive suspension springs stress analysis, the FEA (finite element analysis) and the experimental measurement, through which the maximum stress is found located where the cylinder number is the integer multiple of the first half cycle from the spring end. By scattering or removing the maximum stress points, optimum design, which is based on the cosmosworks method, will promote the fatigue reliability and the employ life of the springs.展开更多
Electrorheological (ER) properties of polyaniline (PAni), pumice and polyaniline/pumice composites (PAPC) were investigated. Polyaniline and PAni/pumice composite were prepared by oxidative polymerization. PAni/...Electrorheological (ER) properties of polyaniline (PAni), pumice and polyaniline/pumice composites (PAPC) were investigated. Polyaniline and PAni/pumice composite were prepared by oxidative polymerization. PAni/pumice particlesbased ER suspensions were prepared in silicone oil (SO), and their ER behavior was investigated as a function of shear rate, electric field strength, concentration and temperature. Sedimentation stabilities of suspensions were determined. It has been found that ER activity of all the suspensions increases with increasing electric field strength, concentration and decreasing shear rate. It has shown that the suspensions have a typical shear thinning non-Newtonian viscoelastic behavior. Yield stress of composite suspensions increased linearly with increasing applied electric field strength and with concentrations of the particles. The effect of high temperature on ER activity of purrfice/silicone oil systems was also investigated.展开更多
Mechanical microenvironment can strongly affect the metastatic efficiency of circulating tumor cells.However,the effect of suspension state on their extravasation and the mechanisms involved are still unclear.To explo...Mechanical microenvironment can strongly affect the metastatic efficiency of circulating tumor cells.However,the effect of suspension state on their extravasation and the mechanisms involved are still unclear.To explore the influence of suspension state on extravasation(including adhesion,spreading and transendothelial migration)of breast tumor cells and its relevant molecular mechanism,MDA-MB-231 cells were cultured on poly(2-hydroxyethyl methacrylate)coated 6-well plates to minic the suspension state.Suspension state promoted adhesion,spreading and transendothelial migration of MDA-MB-231 cells to EAhy926 endothelial cells(ECs)monolayer under both the static condition and 0.5 dyne/cm^(2) flow shear stress(FSS).The number of cells adhered to ECs monolayer reached 2.15(static condition,3 d)and 1.67(FSS,3 d)times,and the number of migration reached 10.60 times,respectively,as compared to that in adhesion state.Moreover,MDA-MB-231 cells knockdown of integrin β1 provoked poor adhesion and transendothelial migration,as compared with MDA-MB-231 cells.But it made no difference in cell spreading.Our results implied the increasing expression of integrin β1 induced by suspension culture promoted the adhesion and transendothelial migration of MDA-MB-231 cells,but had no significant influence on their spreading.展开更多
Surface treatment of glass bead(GB) was carried out by using γ-glycidoxypropyltrimethoxy silane(GPTES) and γ-methacryloxypropyltrimethoxy silane(MPTMS) as coupling agents,respectively.The steady viscosity and yield ...Surface treatment of glass bead(GB) was carried out by using γ-glycidoxypropyltrimethoxy silane(GPTES) and γ-methacryloxypropyltrimethoxy silane(MPTMS) as coupling agents,respectively.The steady viscosity and yield stress of the GB/hydroxyl terminated polybutadiene(HTPB) suspensions were determined by Brookfield R/S rheometer.The effect of surface treatment on the viscosity and yield stress of GB/HTPB suspension was investigated.The results indicate that the viscosity of the pristine GB/HTPB suspension increases with increasing GB,and the relationship between its viscosity and volume fraction of GB depends on the shear rate.The modification of GB by MPTMS changes the viscosity of the MPTMS@GB/HTPB suspension,and its viscosity is the minimum at the MPTMS dosage of 0.3 g per 1 g GB.Additionally,the modification of GB by MPTMS increases the yield stress of the GB/HTPB suspension,and its yield stress is the maximum at the MPTMS dosage of 0.1 g per 1 g GB.The GPTES modified GB/HTPB suspension behaves lower viscosity and weaker shear thinning than the MPTMS modified GB/HTPB suspension within the range of experimental shear rate.展开更多
In this study, electrorheological (ER) behavior of suspensions prepared from 3.0 and 9.0 μm diatomite particulate, dispersed in insulating silicone oil (SO) medium was investigated. Sedimentation stabilities of s...In this study, electrorheological (ER) behavior of suspensions prepared from 3.0 and 9.0 μm diatomite particulate, dispersed in insulating silicone oil (SO) medium was investigated. Sedimentation stabilities of suspensions (c = 5 wt%) prepared using these diatomite powders were determined to be 32 days (d = 3 μm) and 24 days (d = 9 μm), respectively. ER activity of all the suspensions was observed to increase with increasing electric field strength, concentration and decreasing shear rate. Shear stress of diatomite suspensions increased linearly with increasing concentrations of the particles and with the applied electric field strength. Electric field viscosity of all the suspensions decreased sharply with increasing shear rate and particle size, showing a typical shear thinning non-Newtonian visco-elastic behavior. Effects of high temperature and polar promoter onto ER activity ofdiatomite/SO system were also investigated.展开更多
In this study, the electrorheological (ER) behavior of suspensions prepared from d50 = 2.4 lam talc powder, dispersed in insulating silicone oil (SO) medium was investigated. Sedimentation stabilities of suspensio...In this study, the electrorheological (ER) behavior of suspensions prepared from d50 = 2.4 lam talc powder, dispersed in insulating silicone oil (SO) medium was investigated. Sedimentation stabilities of suspensions (c = 5 wt%) prepared using these talc powder powders were determined to be 78 days. The ER activity of all the suspensions was observed to increase with increasing electric field strength, concentration and decreasing shear rate. The shear stress of talc powder suspensions increased linearly with increasing concentrations of the particles and with the applied electric field strength. Electric field viscosity of all the suspensions decreased sharply with increasing shear rate and showed a typical shear thinning non-Newtonian visco-elastic behavior. Effects of frequency on the ER activity of talc powder/SO system were also investigated.展开更多
Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) si...Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) simulation of damper units.The verified force-displacement hysteretic curve of the damper system was obtained with reference to tests.The Nanjing Jiangxinzhou Bridge(NJB) was subsequently taken as the case to investigate the seismic response control effect of EPSDs on single-tower self-anchored suspension bridges.A 3-dimensional FE model of the bridge was established in ANSYS and the dynamic and static analyses of the bridge were conducted,the control effect of EPSDs under different seismic waves was further investigated through nonlinear time-history analysis based on the validated model.Results showed that both the simplified theoretical and FE simulation methods can preferable reflect the mechanical performance of EPSD,and that seismic responses of NJB with EPSDs are better than those with elastic connection device or fluid viscous damper.However,the control effect of EPSDs is influenced by seismic wave characteristics.展开更多
Based on the spatial model,a reliable and accurate calculation method on the shape finding of self anchored suspension bridge with spatial cables was studiedin this paper.On the principle that the shape of the main ca...Based on the spatial model,a reliable and accurate calculation method on the shape finding of self anchored suspension bridge with spatial cables was studiedin this paper.On the principle that the shape of the main cables between hangers is catenary,the iteration method of calculating the shapes of the spatial main cables under the load of hanger forces was deduced.The reasonable position of the saddle was determined according to the shape and the theoretical joint point of the main cables.The shapes of the main cables at completed cable stage werecalculated based on the unchanging principle of the zero-stress lengths of the main cables.By using a numerical method combining with the finite element method,one self-anchored suspension bridge with spatial cables was analyzed.The zero-stress length of the main cables,the position of the saddle,and the pre-offsetting of the saddle of the self-anchored suspension bridge were given.The reasonable shapes of the main cables at bridge completion stage and completed cable stage were presented.The results show that the shape-finding calculation method is effective and reliable.展开更多
The limit span of self-anchored cable-stayed suspension bridge is deduced.The relations among the geometrical parameters,loads and material characteristics are also analyzed.Based on the material strength and commonly...The limit span of self-anchored cable-stayed suspension bridge is deduced.The relations among the geometrical parameters,loads and material characteristics are also analyzed.Based on the material strength and commonly used materials,the limit spans of self-anchored cable-stayed suspension bridges with concrete girder or steel girder under vertical static load are discussed in detail.The corresponding upper limit spans and the effect of the factors on the span are given.The results indicate that increasing rise-span ratio,height-span ratio and cable-stayed segment length or reducing the second dead load could increase the cooperation system span.展开更多
Earthquake may cause severe damage to all kinds of bridge such as the falling down of the girder; therefore,effective measures should be employed to control the seismic displacement. In this paper,the method of compre...Earthquake may cause severe damage to all kinds of bridge such as the falling down of the girder; therefore,effective measures should be employed to control the seismic displacement. In this paper,the method of comprehensive optimal control,com-bined with analytic hierarchy process,is employed to investigate the seismic response control of the Nanjing Jiangxinzhou Bridge,which is a single-tower self-anchored suspension bridge (SSSB). Also,3-dimensional nonlinear seismic response analyses are con-ducted. Three types of practical connection measures for seismic response control of SSSB are investigated,and the optimal pa-rameters of the connection devices are achieved by this method. Results show that both the elastic connection devices and the damp-ers with rational parameters can reduce the seismic displacement of the bridge effectively,but the elastic connection devices will in-crease the seismic force of the tower. When all factors are consid-ered,the optimal measure is by using the elastic connection devices and the dampers together. These results can provide references for seismic response control of SSSBs.展开更多
基金The National High Technology Research and Development Program of China(863 Program)(No.2006AA04Z416)the National Science Fund for Distinguished Young Scholars(No.50725828)
文摘Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is established by the secondary development technology based on the platform of the general finite element program, and a reasonable load pattern is used in its spatial structural analysis, by which its path of force transference and stress distribution are obtained. Matched with the spatial main cable, the tangency point correction method is also discussed. The results show that the lateral wall stress of the saddle groove is higher than the stress within the wall due to the role of lateral forces in the finished bridge state; the horizontal volume force of the main cable can generate a gradient distributed vertical extrusion pressure on the saddle clamping device and the main saddle body; the geometric nonlinear effect of the self- anchored suspension bridge cable system in the construction process is significant, which can be reflected in the spatial tangent point position of the main cable with the main saddle changes a lot from free cable to finished cable.
基金Project(51278104)supported by the National Natural Science Foundation of ChinaProject(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,China+1 种基金Project(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.
基金Project(20133204120015) supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003) supported by the Natural Science Foundation of the Higher Education Institution of Jiangsu Province,China
文摘A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge.
基金Project(201606090050)supported by China Scholarship CouncilProject(51278104)supported by the National Natural Science Foundation of China+2 种基金Project(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,ChinaProject(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.
文摘Based on the variational prineiple of incomplete generalized potential energy with large deflection, the vertical nonlinear vibrational differential equation of self-anchored suspension bridge is presented by taking the effect of coupling of flexural and axial action into consideration. The linear vertical equation is obtained by omitting the nonlinear term, and the pseudo excitation method(PEM). Taking the self-anchored concrete suspension bridge over Lanqi Songhua river for an example, the expected peak responses of main beam, towers and cables are calculated. And the seismic spatial effects on vertical seismic response of self-anchored suspension bridges are discussed.
文摘Self-anchored suspension bridge is composed of tower and its foundation, stiffened beam, main cable, sling, side pier and its foundation, auxiliary pier and its foundation. The performance and importance of the components of the bridge are different. The main tower of self-anchored suspension bridge is a very important component. Once the injury and damage occur under earthquake, it is not only difficult to inspect and repair, let alone replace. This paper calculates the seismic performance of self-anchored suspen-sion bridge steel tower based on the application of Wuhan Gutian Bridge steel tower.
基金The project supported by the Doctoral Program of Higher Education in China(20030335001)
文摘The equations for fiber suspensions in an evolving mixing layer were solved by the spectral method, and the trajectory and orientation of fibers were calculated based on the slender body theory. The calculated spatial and orientation distributions of fibers are consistent with the experimental ones that were performed in this paper. The relationship between the microstructure of fibers and additional stress was examined. The results show that the spatial and orientation distributions of fibers are heterogeneous because of the influence of coherent vortices in the flow, which leads to the heterogeneity of the additional stress. The degree of heterogeneity increases with the increasing of St number and fiber aspect ratio. The fibers in the flow make the momentum loss thickness of the mixing layer thicker and accelerate the vorticity dispersion.
基金Project(2015CB057701)supported by the National Basic Research Program of ChinaProject(51308071)supported by the National Natural Science Foundation of China+3 种基金Project(13JJ4057)supported by Natural Science Foundation of Hunan Province,ChinaProject(201408430155)supported by the Foundation of China Scholarship CouncilProject(2015319825120)supported by the Traffic Department of Applied Basic Research,ChinaProject(12K076)supported by the Open Foundation of Innovation Platform in Hunan Provincial Universities,China
文摘A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.
文摘The pH dependence of the extrapolated shear yield stress for Alcoa A16 a-Al2O3 suspensions at the powder volume fraction of 0.27 with and without addition of both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) each at fixed 0.18% of the powder mass was studied. With the polymer added, the full deflocculation of the suspension shifts from about pH=4 to around pH=1.5, at which the minimum value of shear yield stress is higher than that at pH=4. The addition of both PVA and PEG was found to prevent the filter cake from cracking.
基金National Major Scientific and Technological Special Project for"Significant New Drugs Development"(2019ZX09301-005).
文摘[Objectives]To explore the antidepressant effect of Shenwei Ningyu Tablet,a new antidepressant traditional Chinese medicine,on rat chronic stress depression model and mouse tail suspension models.[Methods]Rat chronic stress model:except for the normal group,the rats in other groups were given corresponding chronic stress,and administered by gavage 1 h before modeling,for a total of 21 d.The changes of each indicator before and after the experiment were observed through the body weight change,the sugar water test,and open field test.The relevant hormone levels were detected by radioimmunoassay.Mouse tail suspension depression model:after continuous administration for 7 d,the activity times was recorded with the mouse automatic recorder,and the mouse immobility time was recorded after tail suspension,to explore the effects of each administration group on the tail suspension immobility time of mice.[Results]Chronic stress depression model:21 d after modeling,compared with the normal group,rats in the model group exhibited significantly reduced body weight,sucrose preference index,and horizontal and vertical movement scores(P<0.05).Compared with the model group,the low-dose Shenwei Ningyu Tablets group had significant differences in the sugar water test,horizontal and vertical movement scores(P<0.05).In addition,all three dose groups of Shenwei Ningyu Tablets could effectively reduce the content of CRF in chronic stress model rats,and the low dose group could significantly reduce the ACTH level in model rats(P<0.05).Mouse tail suspension depression model:the immobility time after tail suspension in each administration group was significantly different from that in the model group(P<0.05).[Conclusions]Shenwei Ningyu Tablets has a certain anti-depression effect on both the rat chronic stress depression model and the mouse tail suspension depression model.
文摘This paper introduced two methods of automotive suspension springs stress analysis, the FEA (finite element analysis) and the experimental measurement, through which the maximum stress is found located where the cylinder number is the integer multiple of the first half cycle from the spring end. By scattering or removing the maximum stress points, optimum design, which is based on the cosmosworks method, will promote the fatigue reliability and the employ life of the springs.
基金This work was financially supported by the TUBITAK (Turkish Scientific and Technical Research Foundation)Süleyman Demirel University (Nos. TBAG-AY-344, SDU BAP 03-m-714)
文摘Electrorheological (ER) properties of polyaniline (PAni), pumice and polyaniline/pumice composites (PAPC) were investigated. Polyaniline and PAni/pumice composite were prepared by oxidative polymerization. PAni/pumice particlesbased ER suspensions were prepared in silicone oil (SO), and their ER behavior was investigated as a function of shear rate, electric field strength, concentration and temperature. Sedimentation stabilities of suspensions were determined. It has been found that ER activity of all the suspensions increases with increasing electric field strength, concentration and decreasing shear rate. It has shown that the suspensions have a typical shear thinning non-Newtonian viscoelastic behavior. Yield stress of composite suspensions increased linearly with increasing applied electric field strength and with concentrations of the particles. The effect of high temperature on ER activity of purrfice/silicone oil systems was also investigated.
基金supported in part by grants from the National Natural Science Foundation of China(11672051)Fundamental Research Funds for the Central Universities(2018CDQYSG0015).
文摘Mechanical microenvironment can strongly affect the metastatic efficiency of circulating tumor cells.However,the effect of suspension state on their extravasation and the mechanisms involved are still unclear.To explore the influence of suspension state on extravasation(including adhesion,spreading and transendothelial migration)of breast tumor cells and its relevant molecular mechanism,MDA-MB-231 cells were cultured on poly(2-hydroxyethyl methacrylate)coated 6-well plates to minic the suspension state.Suspension state promoted adhesion,spreading and transendothelial migration of MDA-MB-231 cells to EAhy926 endothelial cells(ECs)monolayer under both the static condition and 0.5 dyne/cm^(2) flow shear stress(FSS).The number of cells adhered to ECs monolayer reached 2.15(static condition,3 d)and 1.67(FSS,3 d)times,and the number of migration reached 10.60 times,respectively,as compared to that in adhesion state.Moreover,MDA-MB-231 cells knockdown of integrin β1 provoked poor adhesion and transendothelial migration,as compared with MDA-MB-231 cells.But it made no difference in cell spreading.Our results implied the increasing expression of integrin β1 induced by suspension culture promoted the adhesion and transendothelial migration of MDA-MB-231 cells,but had no significant influence on their spreading.
文摘Surface treatment of glass bead(GB) was carried out by using γ-glycidoxypropyltrimethoxy silane(GPTES) and γ-methacryloxypropyltrimethoxy silane(MPTMS) as coupling agents,respectively.The steady viscosity and yield stress of the GB/hydroxyl terminated polybutadiene(HTPB) suspensions were determined by Brookfield R/S rheometer.The effect of surface treatment on the viscosity and yield stress of GB/HTPB suspension was investigated.The results indicate that the viscosity of the pristine GB/HTPB suspension increases with increasing GB,and the relationship between its viscosity and volume fraction of GB depends on the shear rate.The modification of GB by MPTMS changes the viscosity of the MPTMS@GB/HTPB suspension,and its viscosity is the minimum at the MPTMS dosage of 0.3 g per 1 g GB.Additionally,the modification of GB by MPTMS increases the yield stress of the GB/HTPB suspension,and its yield stress is the maximum at the MPTMS dosage of 0.1 g per 1 g GB.The GPTES modified GB/HTPB suspension behaves lower viscosity and weaker shear thinning than the MPTMS modified GB/HTPB suspension within the range of experimental shear rate.
文摘In this study, electrorheological (ER) behavior of suspensions prepared from 3.0 and 9.0 μm diatomite particulate, dispersed in insulating silicone oil (SO) medium was investigated. Sedimentation stabilities of suspensions (c = 5 wt%) prepared using these diatomite powders were determined to be 32 days (d = 3 μm) and 24 days (d = 9 μm), respectively. ER activity of all the suspensions was observed to increase with increasing electric field strength, concentration and decreasing shear rate. Shear stress of diatomite suspensions increased linearly with increasing concentrations of the particles and with the applied electric field strength. Electric field viscosity of all the suspensions decreased sharply with increasing shear rate and particle size, showing a typical shear thinning non-Newtonian visco-elastic behavior. Effects of high temperature and polar promoter onto ER activity ofdiatomite/SO system were also investigated.
基金This work was supported by the Omya Mining Co of Istanbul and Harran University.
文摘In this study, the electrorheological (ER) behavior of suspensions prepared from d50 = 2.4 lam talc powder, dispersed in insulating silicone oil (SO) medium was investigated. Sedimentation stabilities of suspensions (c = 5 wt%) prepared using these talc powder powders were determined to be 78 days. The ER activity of all the suspensions was observed to increase with increasing electric field strength, concentration and decreasing shear rate. The shear stress of talc powder suspensions increased linearly with increasing concentrations of the particles and with the applied electric field strength. Electric field viscosity of all the suspensions decreased sharply with increasing shear rate and showed a typical shear thinning non-Newtonian visco-elastic behavior. Effects of frequency on the ER activity of talc powder/SO system were also investigated.
基金supported by the National Natural Science Foundation of China (Grant No. 50908046)the Teaching & Scientific Research Fund for Excellent Young Teachers of Southeast University,the Basic Scientific &Research Fund of Southeast University (Grant Nos. 3205001101,Seucx201106)the Priority Academic Program Development Foundation of Jiangsu Higher Education Institutions are gratefully acknowledged
文摘Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) simulation of damper units.The verified force-displacement hysteretic curve of the damper system was obtained with reference to tests.The Nanjing Jiangxinzhou Bridge(NJB) was subsequently taken as the case to investigate the seismic response control effect of EPSDs on single-tower self-anchored suspension bridges.A 3-dimensional FE model of the bridge was established in ANSYS and the dynamic and static analyses of the bridge were conducted,the control effect of EPSDs under different seismic waves was further investigated through nonlinear time-history analysis based on the validated model.Results showed that both the simplified theoretical and FE simulation methods can preferable reflect the mechanical performance of EPSD,and that seismic responses of NJB with EPSDs are better than those with elastic connection device or fluid viscous damper.However,the control effect of EPSDs is influenced by seismic wave characteristics.
基金The authors would like to gratefully acknowledge the supports from the National Natural Science Foundation of China(Grant No.50738002)and from the School of Civil Engineering and Architecture of Changsha University of Science and Technology and the Wind Engineering Research Center of Hunan University in China.
文摘Based on the spatial model,a reliable and accurate calculation method on the shape finding of self anchored suspension bridge with spatial cables was studiedin this paper.On the principle that the shape of the main cables between hangers is catenary,the iteration method of calculating the shapes of the spatial main cables under the load of hanger forces was deduced.The reasonable position of the saddle was determined according to the shape and the theoretical joint point of the main cables.The shapes of the main cables at completed cable stage werecalculated based on the unchanging principle of the zero-stress lengths of the main cables.By using a numerical method combining with the finite element method,one self-anchored suspension bridge with spatial cables was analyzed.The zero-stress length of the main cables,the position of the saddle,and the pre-offsetting of the saddle of the self-anchored suspension bridge were given.The reasonable shapes of the main cables at bridge completion stage and completed cable stage were presented.The results show that the shape-finding calculation method is effective and reliable.
基金This work was supported by the West Transportation Construction Projects Foundation of the Ministry of Communications(No.200631882350).
文摘The limit span of self-anchored cable-stayed suspension bridge is deduced.The relations among the geometrical parameters,loads and material characteristics are also analyzed.Based on the material strength and commonly used materials,the limit spans of self-anchored cable-stayed suspension bridges with concrete girder or steel girder under vertical static load are discussed in detail.The corresponding upper limit spans and the effect of the factors on the span are given.The results indicate that increasing rise-span ratio,height-span ratio and cable-stayed segment length or reducing the second dead load could increase the cooperation system span.
基金Supported by the National Natural Science Foundation of China for Distinguished Young Scientists (50725828)the National Natural Science Foundation of China (50908046)the Specialized Research Fund for the Doctoral Program of Higher Education (200802861012)
文摘Earthquake may cause severe damage to all kinds of bridge such as the falling down of the girder; therefore,effective measures should be employed to control the seismic displacement. In this paper,the method of comprehensive optimal control,com-bined with analytic hierarchy process,is employed to investigate the seismic response control of the Nanjing Jiangxinzhou Bridge,which is a single-tower self-anchored suspension bridge (SSSB). Also,3-dimensional nonlinear seismic response analyses are con-ducted. Three types of practical connection measures for seismic response control of SSSB are investigated,and the optimal pa-rameters of the connection devices are achieved by this method. Results show that both the elastic connection devices and the damp-ers with rational parameters can reduce the seismic displacement of the bridge effectively,but the elastic connection devices will in-crease the seismic force of the tower. When all factors are consid-ered,the optimal measure is by using the elastic connection devices and the dampers together. These results can provide references for seismic response control of SSSBs.