The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate str...The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water.展开更多
Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented, Using a Hg-SAM/SAM-Ⅱg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturbati...Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented, Using a Hg-SAM/SAM-Ⅱg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturbation of 30 mV (peak to-peak) with the frequency ranging from 1 Hz to 1 MHz at zero bias. The contributions from dithiol SAMs and solvent interlayers were separated due to their different behaviors at ac impedance. The peak position in the loss spectra (the plot; of tgδ vs. frequency) moves to low frequcney with the incrcase of chain length of dithiols. Using a correlation of peak position with the chain length, the active energies of 23-39 meV for dithiol SAMs of C6-C10 under an ac electric field were derived,展开更多
A mixed self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic acid amide (T-NH2) were used to immobilize tyrosinase for fabricating biosensor. The results showed that the mixed SAMs prepared fr...A mixed self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic acid amide (T-NH2) were used to immobilize tyrosinase for fabricating biosensor. The results showed that the mixed SAMs prepared from solution at the ratio of 1:4 provided an excellent microenvironment for enzymatic reaction between tyrosinase and substrate. The biosensor exhibited a fast response and high sensitivity for sensing substrate.展开更多
SrTiO3 thin film was successfully prepared on the functionalized organic self-assembled monolayers(SAMs) by the Liquid Phase Deposition(LPD) method.The as-prepared samples were characterized by X-ray diffraction(...SrTiO3 thin film was successfully prepared on the functionalized organic self-assembled monolayers(SAMs) by the Liquid Phase Deposition(LPD) method.The as-prepared samples were characterized by X-ray diffraction(XRD),atomic force microscope(AFM),scanning electron microscopy(SEM) and metallographic microscope.Measurement of contact angle showed that the hydrophobe substrate was changed into hydrophile by UV irradiation.AFM photographs of octadecyl-trichloro-silane self-assembled monolayer(OTS-SAM) surface approved that UV irradiation did change the morphology of OTS monolayer and provided evidence for the conversion of hydrophilic characteristic.Photographs of Metallographic Microscope showed that OTS-SAM had an active effect on the deposition of SrTiO3 thin film.XRD and SEM indicated that the thin film was of pure cubic phase SrTiO3 and composed of nanosized grains with a size in the range of 100-500 nm.The formation mechanism of the SrTiO3 film was proposed.展开更多
Based on MEMS technology,immunosensor with an'Au,Pt,Pt'three-microelectrode system enclosed in a SU-8 micro pool was fabricated.Employing SAMs technique,the Au electrode was modified by cysteamine(Cys)to assem...Based on MEMS technology,immunosensor with an'Au,Pt,Pt'three-microelectrode system enclosed in a SU-8 micro pool was fabricated.Employing SAMs technique,the Au electrode was modified by cysteamine(Cys)to assemble gold nanopanicles(nanogold)layer,subsequently,a layer of protein G(PG)was immobilized on nanogold layer to further capture antibody orientedly.Compared with the immunosensors using bulky gold electrode and direct PG binding to electrode immobilization technique for antibody,it has attractive advantages,such as miniaturization,good compatibility,broad linear range for human immunoglobulin(HIgG)and easy to be designed into array.展开更多
Impedance titration was used to determine the surface dissociation characteristics of short-chain carboxyl mercaptan self-assembled monolayers (SAMs). Based on the change of the cyclic voltammetric peak current and ...Impedance titration was used to determine the surface dissociation characteristics of short-chain carboxyl mercaptan self-assembled monolayers (SAMs). Based on the change of the cyclic voltammetric peak current and the charge-transfer resistance, which was related to pH value of the solution, the surface pKa of mercaptoacetic acid(MA), 3-mercaptopropionic acid(MPA) and ω-mercaptohexanic acid(MHA) self-assembled membranes, with ionic strength being 0.1 mol/L, were determined to be 5.20, 4.80, 7.40, respectively. In addition, factors such as time needed for assembling, structure of monolayers and ionic strength, which effected the surface pKa, were studied as well. Such surface pKa shifts were sufficiently explained by interactions between interfacial molecules and hydrophobicity.展开更多
The self-assembled monolayers (SAMs) of imidazoline (IM) on the iron surface were characterized by scanning electron microscope (SEM) and scanning electrochemical microscopy (SECM). The results showed that SAM...The self-assembled monolayers (SAMs) of imidazoline (IM) on the iron surface were characterized by scanning electron microscope (SEM) and scanning electrochemical microscopy (SECM). The results showed that SAMs were an effective inhibition film for iron.展开更多
The intermolecular interaction in an azobenzene self-assembled monolayers (SAMs) on gold electrode was investigated by controlling the assembling time and using mixed self-assembled techniques, and the variation of ap...The intermolecular interaction in an azobenzene self-assembled monolayers (SAMs) on gold electrode was investigated by controlling the assembling time and using mixed self-assembled techniques, and the variation of apparent electron transfer rate constant (k(s)) of azobenzene SAMs with different molecular packing density is reported.展开更多
A new method for preparing chemically modified gold electrode by anchoring thionine to self-assembled bi - (2 -aminoethyl) -aminodithiocarboxyl acid(BANTC) monolayers through coordination with Cu2+ is described. This...A new method for preparing chemically modified gold electrode by anchoring thionine to self-assembled bi - (2 -aminoethyl) -aminodithiocarboxyl acid(BANTC) monolayers through coordination with Cu2+ is described. This thionine modified electrode exhibits two-new redox couples.Two protons were involved in the electrochemical process undergone by the couple I in the pH range of 5.0-10.0. The apparent surface electron transfer rate constant is about 0.050s-1.展开更多
A newly synthesized reagent 2-amino-5-mercapto-[1, 3, 4]triazole (MATZ) has been usedto fabricate self-assembled monolayers (SAMs) on gold electrode for the first time. The SAMselectrode was characterized by electroch...A newly synthesized reagent 2-amino-5-mercapto-[1, 3, 4]triazole (MATZ) has been usedto fabricate self-assembled monolayers (SAMs) on gold electrode for the first time. The SAMselectrode was characterized by electrochemical methods and scanning electronic microscopy (SEM),the SAMs electrode can be used to determinate dopamine (DA) and uric acid (UA) simultaneouslywith a detection limit of 8×10-7 mol/L for DA and 1×10-6 mol/L for UA respectively. The SAMscan also be used to detect the contents of DA and UA in synthetic urine sample with satisfactoryresults.展开更多
The electrochemical quartz crystal microbalance (EQCM) is used to investigate the characteristics of the thiolated self-assembled monolayer(SAM) on gold surface.A 5MHz QCM element serves as both the mass-sensitive sen...The electrochemical quartz crystal microbalance (EQCM) is used to investigate the characteristics of the thiolated self-assembled monolayer(SAM) on gold surface.A 5MHz QCM element serves as both the mass-sensitive sensor and the working electrode of the electrochemical system.The 6-mecapto-1-hexanol and and the 16-mer oligonucleotide with a mercaptohexyl group at the 5'-phosphate end are utilized to form the SAM on the gold electrode.The frequency response of the QCM during cyclic voltammetry (CV) scanning and cbronoamperometry are recorded together with the electrochemical current.The experimental results indicates that the frequency response is more sensitive to the surface coverage.Therefore,the response of the EQCM reveals more details of the SAM on gold electrode.It is especially useful for analysing the immobilization quality,such as probe orientation and coverage,of the SAM.展开更多
Silane coupling regent (3-mercaptopropyl trimethoxysilane (MPTS)) was prepared on the single-crystal silicon substrate to form 2-dimensional self-assembled monolayers (SAMs). The growth behavior of SAMs formed f...Silane coupling regent (3-mercaptopropyl trimethoxysilane (MPTS)) was prepared on the single-crystal silicon substrate to form 2-dimensional self-assembled monolayers (SAMs). The growth behavior of SAMs formed from 3-MPTS was investigated using atomic force microscopy (AFM), contact angle measurements, ellipsometry, and X-ray photoelectron spectroscopy (XPS). The formation behavior of MPTS SAMs was investigated by a series of AFM images and the roughness of MPTS SAMs on silicon substrates with the assembling time from 1 min to 24 h. The water contact angle measurements indicated the growth behavior of MPTS that correlated with the AFM measurements at different immersion times, too. The chemical states of the typical elements in the MPTS SAMs were analyzed using X-ray photoelectron spectroscopy. The results show that MPTS is self-assembled on the substrate.展开更多
A novel hydrogen peroxide biosensor has been fabricated based on covalently linked horseradish peroxidase (HRP) onto L- glutathione self-assembled monolayers (SAMs). The SAMs-based electrode was characterized by e...A novel hydrogen peroxide biosensor has been fabricated based on covalently linked horseradish peroxidase (HRP) onto L- glutathione self-assembled monolayers (SAMs). The SAMs-based electrode was characterized by electrochemical methods, and direct electrochemistry of HRP can be achieved with formal potential of-0.242 V (vs. saturated Ag/AgCl) in pH 7 phosphate buffer solution (PBS), the redox peak current is linear to scan rate and rate constant can be calculated to be 0.042 s^-1. The HRP-SAMs- based biosensors show its better electrocatalysis to hydrogen peroxide in the concentration range of 1 × 10^-6 mol/L to 1.2 × 10^-3 mol/L with a detection limit of 4 × 10^-7 mol/L. The apparent Michealis-Menten constant is 3.12 mmol/L. The biosensor can effectively eliminate the interferences of dopamine, ascorbic acid, uric acid, catechol and p-acetaminophen.展开更多
This study investigated the stability behaviour of molecular monolayer symmetric chemically modified tetraether lipids caldarchaeol-PO<sub>4</sub> on the amino-silanised silicon wafer using Langmuir-Blodge...This study investigated the stability behaviour of molecular monolayer symmetric chemically modified tetraether lipids caldarchaeol-PO<sub>4</sub> on the amino-silanised silicon wafer using Langmuir-Blodgett films, Self Assembling Monolayers (SAMs), ellipsometry, and atomic force microscopy (AFM). The monolayers of caldarchaeol-PO<sub>4 </sub>were stable on the solid surface amino-silanised silicon wafer. The organizations of molecular monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method and SAMs have been analyzed. The surface of pressure in Langmuir-Blodgett processing is carried out monolayers caldarchaeol-PO<sub>4</sub> more flat island inhomogeneous. Another method of monolayers caldarchaeol-PO<sub>4</sub> by SAMs is showed a large flat domain. Monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method seems to be stable and chemically resistant after washing with organic solvent and an additional treatment ultrasonification with various thickness lipids arround 2 nm to 6 nm. Conversely, monolayer caldarchaeol-PO<sub>4</sub> by SAMs appears fewer than monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method, the thickness of various from 1 nm to 3 nm.展开更多
Self-assembled monolayers (SAMs) are ordered organic films formed by adsorption of an active organic coating on a solid surface. Their formation provides an alternative, highly innovative, to current traditional chemi...Self-assembled monolayers (SAMs) are ordered organic films formed by adsorption of an active organic coating on a solid surface. Their formation provides an alternative, highly innovative, to current traditional chemical treatments of the titanium surfaces. For this reason the structural phases, the formation and the growth of SAMs is described from a surface science point of view. Particulars are given to SAMs on titanium concerning surface morphology, chemical composition and affinity of specific head group for Ti surfaces (silanes, siloxane, phosphonates and phosphates). Preparation, coating methodologies, limitations and techniques used for the characterization of SAMs are reported. For their physicochemical characteristics and micro-nano scale features some perspectives of using SAMs in biomedical application are outlined.展开更多
The well controllable selective growth of carbon nanotubes (CNTs)on the desired area is an important issue for their future applications. In this study, a novel method for selective growth of CNTs was proposed by usin...The well controllable selective growth of carbon nanotubes (CNTs)on the desired area is an important issue for their future applications. In this study, a novel method for selective growth of CNTs was proposed by using the technology of self-assembly monolayers (SAMs) and the Fe-assisted CNTs growth. The Si wafers with the a : Si/Si3N4 layer patterns were first prepared by low pressure chemical vapor deposition (LPCVD)and lithography techniques to act as the substrates for selective deposition of SAMs. The selectivity of SAMs from APTMS solution (N-(2-aminoethyl)-3-aminopropyltrimethoxsilane) is based on its greater reactivity of head group on a-Si than Si3N4 films. The areas of pattern with SAMs will first chelate the Fe3+ ions by their diamine-terminated group. The Fe3+ ions were then consolidated to become Fe-hydroxides in sodium boron hydride solution to form the Fe-hydroxides pattern. Finally, the Fe-hydroxides pattern was pretreated in H plasma to become a well-distributed Fe nano-particles on the surface, and followed by CNTs deposition using Fe as catalyst in a microwave plasma-chemical vapor deposition (MP-CVD) system to become the CNTs pattern. The products in each processing step, including microstructures and lattice images of CNTs, were characterized by contact angle measurements, scanning electron microscopy (SEM), XPS, Auger spectroscopy, transmission electron microscopy (TEM) and high resolution TEM (HRTEM)deposition. The results show that the main process parameters include the surface activation process and its atmosphere, consolidation time and temperature, H plasma pretreatment. The function of each processing step will be discussed.展开更多
Self-assembled monolayers(SAMs)represent an important tool in context of nanofabrication and molecular engineering of surfaces and interfaces.The properties of functional SAMs depend not only on the character of the t...Self-assembled monolayers(SAMs)represent an important tool in context of nanofabrication and molecular engineering of surfaces and interfaces.The properties of functional SAMs depend not only on the character of the tail groups at the SAM-ambient interface,but are also largely defined by their structure.In its turn,the latter parameter results from a complex interplay of the structural forces and a variety of other factors,including so called odd-even effects,viz.dependence of the SAM structure and properties on the parity of the number(odd or even)of individual building blocks in the backbone of the SAM constituents.The most impressive manifestation of the odd-even effects is the structure of aryl-substituted alkanethiolate SAMs on Au(111)and Ag(111),in which,in spite of the fact that the intermolecular interaction is mostly determined by the aryl part of the monolayers,one observes a pronounced dependence of molecular inclination and,consequently,the packing density of the SAM-forming molecules on the parity of number of methylene units in the alkyl linker.Here we review the properties of the above systems as well as address fundamental reasons behind the odd-even effects,including the existence of a so-called bending potential,which is frequently disregarded in analysis of the structure-building forces.The generality of the odd-even effects in SAMs is additionally supported by the recent data for SAMs on GaAs,scanning tunneling microscopy data for SAMs on Ag(111),and the data for the monolayers with selenolate and carboxyl anchoring groups on Au(111)and Ag(111).The implications of these effects in terms of the control over the packing density and orientation of the tail groups at the SAM-ambient interface,structural perfection,polymorphism,temperature-driven phase transitions,and SAM stability toward such factors as ionizing radiation,exchange reaction,and electrochemical desorption are discussed.These implications place the odd-even effects as an important tool for the design of functional SAMs in context of specific applications.展开更多
Stabilizing the Zn anode under high utilization rates is highly applauded yet very challenging in aqueous Zn batteries.Here,we rationally design a zincophilic short-chain aromatic molecule,4-mercaptopyridine(4Mpy),to ...Stabilizing the Zn anode under high utilization rates is highly applauded yet very challenging in aqueous Zn batteries.Here,we rationally design a zincophilic short-chain aromatic molecule,4-mercaptopyridine(4Mpy),to construct self-assembled monolayers(SAMs)on a copper substrate to achieve highly utilized Zn anodes.We reveal that 4Mpy could be firmly bound on the Cu substrate via Cu–S bond to form compact and uniform SAMs,which could effectively isolate the water on the electrode surface and thus eliminate the water-related side reactions.In addition,the short-chain aromatic ring structure of 4Mpy could not only ensure the ordered arrangement of zincophilic pyridine N but also facilitate charge transfer,thus enabling uniform and rapid Zn deposition.Consequently,the Zn/4Mpy/Cu electrode not only enables the symmetric cell to stably cycle for over 180 h at 10 mA cm^(-2) under a high depth-of-discharge of 90%,but also allows the MnO_(2)-paired pouch cell to survive for 100 cycles under a high Zn utilization rate of 78.8%.An anode-free 4Mpy/Cu||graphite cell also operates for 150 cycles without obvious capacity fading at 0.1 A g^(-1).This control of interfacial chemistry via SAMs to achieve high utilization rates of metal anodes provides a new paradigm for developing high-energy metal-based batteries.展开更多
Self-assembled monolayers(SAMs)employed in inverted perovskite solar cells(PSCs)have achieved groundbreaking progress in device efficiency and stability for both single-junction and tandem configurations,owing to thei...Self-assembled monolayers(SAMs)employed in inverted perovskite solar cells(PSCs)have achieved groundbreaking progress in device efficiency and stability for both single-junction and tandem configurations,owing to their distinctive and versatile ability to manipulate chemical and physical interface properties.In this regard,we present a comprehensive review of recent research advancements concerning SAMs in inverted perovskite singlejunction and tandem solar cells,where the prevailing challenges and future development prospects in the applications of SAMs are emphasized.We thoroughly examine the mechanistic roles of diverse SAMs in energy-level regulation,interface modification,defect passivation,and charge transportation.This is achieved by understanding how interfacial molecular interactions can be finely tuned to mitigate charge recombination losses in inverted PSCs.Through this comprehensive review,we aim to provide valuable insights and references for further investigation and utilization of SAMs in inverted perovskite single‐junction and tandem solar cells.展开更多
基金Project supported by the National Natural Science Foundation of China (Grants No. 12075201)the Science and Technology Planning Project of Jiangsu Province, China (Grant No. BK20201428)+1 种基金the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21 3193)the Special Program for Applied Research on Supercomputation of the NSFC–Guangdong Joint Fund (the second phase)。
文摘The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water.
文摘Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented, Using a Hg-SAM/SAM-Ⅱg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturbation of 30 mV (peak to-peak) with the frequency ranging from 1 Hz to 1 MHz at zero bias. The contributions from dithiol SAMs and solvent interlayers were separated due to their different behaviors at ac impedance. The peak position in the loss spectra (the plot; of tgδ vs. frequency) moves to low frequcney with the incrcase of chain length of dithiols. Using a correlation of peak position with the chain length, the active energies of 23-39 meV for dithiol SAMs of C6-C10 under an ac electric field were derived,
基金financially supported by the Scientific Research Foundation of State Education Ministry of China (Jiaowaisiliu[2008]890)Research Foundation of Education Department of Hebei Province of China(No. 2007132)
文摘A mixed self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic acid amide (T-NH2) were used to immobilize tyrosinase for fabricating biosensor. The results showed that the mixed SAMs prepared from solution at the ratio of 1:4 provided an excellent microenvironment for enzymatic reaction between tyrosinase and substrate. The biosensor exhibited a fast response and high sensitivity for sensing substrate.
基金Funded by National Natural Science Foundation of China (No. 50672055,50872077)National Key Technology R&D Program (No. 2006BAF02A28)the Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘SrTiO3 thin film was successfully prepared on the functionalized organic self-assembled monolayers(SAMs) by the Liquid Phase Deposition(LPD) method.The as-prepared samples were characterized by X-ray diffraction(XRD),atomic force microscope(AFM),scanning electron microscopy(SEM) and metallographic microscope.Measurement of contact angle showed that the hydrophobe substrate was changed into hydrophile by UV irradiation.AFM photographs of octadecyl-trichloro-silane self-assembled monolayer(OTS-SAM) surface approved that UV irradiation did change the morphology of OTS monolayer and provided evidence for the conversion of hydrophilic characteristic.Photographs of Metallographic Microscope showed that OTS-SAM had an active effect on the deposition of SrTiO3 thin film.XRD and SEM indicated that the thin film was of pure cubic phase SrTiO3 and composed of nanosized grains with a size in the range of 100-500 nm.The formation mechanism of the SrTiO3 film was proposed.
基金This work is supported by the National Natural Science Foundation of China (Grant No. 90307014).
文摘Based on MEMS technology,immunosensor with an'Au,Pt,Pt'three-microelectrode system enclosed in a SU-8 micro pool was fabricated.Employing SAMs technique,the Au electrode was modified by cysteamine(Cys)to assemble gold nanopanicles(nanogold)layer,subsequently,a layer of protein G(PG)was immobilized on nanogold layer to further capture antibody orientedly.Compared with the immunosensors using bulky gold electrode and direct PG binding to electrode immobilization technique for antibody,it has attractive advantages,such as miniaturization,good compatibility,broad linear range for human immunoglobulin(HIgG)and easy to be designed into array.
基金Supported by the Natural Science Project of Hubei Provin-cial Department of Education (2005D6002)
文摘Impedance titration was used to determine the surface dissociation characteristics of short-chain carboxyl mercaptan self-assembled monolayers (SAMs). Based on the change of the cyclic voltammetric peak current and the charge-transfer resistance, which was related to pH value of the solution, the surface pKa of mercaptoacetic acid(MA), 3-mercaptopropionic acid(MPA) and ω-mercaptohexanic acid(MHA) self-assembled membranes, with ionic strength being 0.1 mol/L, were determined to be 5.20, 4.80, 7.40, respectively. In addition, factors such as time needed for assembling, structure of monolayers and ionic strength, which effected the surface pKa, were studied as well. Such surface pKa shifts were sufficiently explained by interactions between interfacial molecules and hydrophobicity.
基金the National Natural Science Foundation of China(No.20573069)for financial support of this research.
文摘The self-assembled monolayers (SAMs) of imidazoline (IM) on the iron surface were characterized by scanning electron microscope (SEM) and scanning electrochemical microscopy (SECM). The results showed that SAMs were an effective inhibition film for iron.
文摘The intermolecular interaction in an azobenzene self-assembled monolayers (SAMs) on gold electrode was investigated by controlling the assembling time and using mixed self-assembled techniques, and the variation of apparent electron transfer rate constant (k(s)) of azobenzene SAMs with different molecular packing density is reported.
文摘A new method for preparing chemically modified gold electrode by anchoring thionine to self-assembled bi - (2 -aminoethyl) -aminodithiocarboxyl acid(BANTC) monolayers through coordination with Cu2+ is described. This thionine modified electrode exhibits two-new redox couples.Two protons were involved in the electrochemical process undergone by the couple I in the pH range of 5.0-10.0. The apparent surface electron transfer rate constant is about 0.050s-1.
文摘A newly synthesized reagent 2-amino-5-mercapto-[1, 3, 4]triazole (MATZ) has been usedto fabricate self-assembled monolayers (SAMs) on gold electrode for the first time. The SAMselectrode was characterized by electrochemical methods and scanning electronic microscopy (SEM),the SAMs electrode can be used to determinate dopamine (DA) and uric acid (UA) simultaneouslywith a detection limit of 8×10-7 mol/L for DA and 1×10-6 mol/L for UA respectively. The SAMscan also be used to detect the contents of DA and UA in synthetic urine sample with satisfactoryresults.
文摘The electrochemical quartz crystal microbalance (EQCM) is used to investigate the characteristics of the thiolated self-assembled monolayer(SAM) on gold surface.A 5MHz QCM element serves as both the mass-sensitive sensor and the working electrode of the electrochemical system.The 6-mecapto-1-hexanol and and the 16-mer oligonucleotide with a mercaptohexyl group at the 5'-phosphate end are utilized to form the SAM on the gold electrode.The frequency response of the QCM during cyclic voltammetry (CV) scanning and cbronoamperometry are recorded together with the electrochemical current.The experimental results indicates that the frequency response is more sensitive to the surface coverage.Therefore,the response of the EQCM reveals more details of the SAM on gold electrode.It is especially useful for analysing the immobilization quality,such as probe orientation and coverage,of the SAM.
基金This work was financially supported by the National Natural Science Foundation of China (No.50475023)the Nano Foundation of Shanghai Technology Committee (No.0252nm014)the State Key Laboratory Fund (No.0102) in State Key Laboratory for Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science
文摘Silane coupling regent (3-mercaptopropyl trimethoxysilane (MPTS)) was prepared on the single-crystal silicon substrate to form 2-dimensional self-assembled monolayers (SAMs). The growth behavior of SAMs formed from 3-MPTS was investigated using atomic force microscopy (AFM), contact angle measurements, ellipsometry, and X-ray photoelectron spectroscopy (XPS). The formation behavior of MPTS SAMs was investigated by a series of AFM images and the roughness of MPTS SAMs on silicon substrates with the assembling time from 1 min to 24 h. The water contact angle measurements indicated the growth behavior of MPTS that correlated with the AFM measurements at different immersion times, too. The chemical states of the typical elements in the MPTS SAMs were analyzed using X-ray photoelectron spectroscopy. The results show that MPTS is self-assembled on the substrate.
文摘A novel hydrogen peroxide biosensor has been fabricated based on covalently linked horseradish peroxidase (HRP) onto L- glutathione self-assembled monolayers (SAMs). The SAMs-based electrode was characterized by electrochemical methods, and direct electrochemistry of HRP can be achieved with formal potential of-0.242 V (vs. saturated Ag/AgCl) in pH 7 phosphate buffer solution (PBS), the redox peak current is linear to scan rate and rate constant can be calculated to be 0.042 s^-1. The HRP-SAMs- based biosensors show its better electrocatalysis to hydrogen peroxide in the concentration range of 1 × 10^-6 mol/L to 1.2 × 10^-3 mol/L with a detection limit of 4 × 10^-7 mol/L. The apparent Michealis-Menten constant is 3.12 mmol/L. The biosensor can effectively eliminate the interferences of dopamine, ascorbic acid, uric acid, catechol and p-acetaminophen.
文摘This study investigated the stability behaviour of molecular monolayer symmetric chemically modified tetraether lipids caldarchaeol-PO<sub>4</sub> on the amino-silanised silicon wafer using Langmuir-Blodgett films, Self Assembling Monolayers (SAMs), ellipsometry, and atomic force microscopy (AFM). The monolayers of caldarchaeol-PO<sub>4 </sub>were stable on the solid surface amino-silanised silicon wafer. The organizations of molecular monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method and SAMs have been analyzed. The surface of pressure in Langmuir-Blodgett processing is carried out monolayers caldarchaeol-PO<sub>4</sub> more flat island inhomogeneous. Another method of monolayers caldarchaeol-PO<sub>4</sub> by SAMs is showed a large flat domain. Monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method seems to be stable and chemically resistant after washing with organic solvent and an additional treatment ultrasonification with various thickness lipids arround 2 nm to 6 nm. Conversely, monolayer caldarchaeol-PO<sub>4</sub> by SAMs appears fewer than monolayers caldarchaeol-PO<sub>4</sub> by Langmuir-Blodgett method, the thickness of various from 1 nm to 3 nm.
文摘Self-assembled monolayers (SAMs) are ordered organic films formed by adsorption of an active organic coating on a solid surface. Their formation provides an alternative, highly innovative, to current traditional chemical treatments of the titanium surfaces. For this reason the structural phases, the formation and the growth of SAMs is described from a surface science point of view. Particulars are given to SAMs on titanium concerning surface morphology, chemical composition and affinity of specific head group for Ti surfaces (silanes, siloxane, phosphonates and phosphates). Preparation, coating methodologies, limitations and techniques used for the characterization of SAMs are reported. For their physicochemical characteristics and micro-nano scale features some perspectives of using SAMs in biomedical application are outlined.
文摘The well controllable selective growth of carbon nanotubes (CNTs)on the desired area is an important issue for their future applications. In this study, a novel method for selective growth of CNTs was proposed by using the technology of self-assembly monolayers (SAMs) and the Fe-assisted CNTs growth. The Si wafers with the a : Si/Si3N4 layer patterns were first prepared by low pressure chemical vapor deposition (LPCVD)and lithography techniques to act as the substrates for selective deposition of SAMs. The selectivity of SAMs from APTMS solution (N-(2-aminoethyl)-3-aminopropyltrimethoxsilane) is based on its greater reactivity of head group on a-Si than Si3N4 films. The areas of pattern with SAMs will first chelate the Fe3+ ions by their diamine-terminated group. The Fe3+ ions were then consolidated to become Fe-hydroxides in sodium boron hydride solution to form the Fe-hydroxides pattern. Finally, the Fe-hydroxides pattern was pretreated in H plasma to become a well-distributed Fe nano-particles on the surface, and followed by CNTs deposition using Fe as catalyst in a microwave plasma-chemical vapor deposition (MP-CVD) system to become the CNTs pattern. The products in each processing step, including microstructures and lattice images of CNTs, were characterized by contact angle measurements, scanning electron microscopy (SEM), XPS, Auger spectroscopy, transmission electron microscopy (TEM) and high resolution TEM (HRTEM)deposition. The results show that the main process parameters include the surface activation process and its atmosphere, consolidation time and temperature, H plasma pretreatment. The function of each processing step will be discussed.
基金supported by BMBF,DFG,NSC Poland,and DAAD through a variety of projects.
文摘Self-assembled monolayers(SAMs)represent an important tool in context of nanofabrication and molecular engineering of surfaces and interfaces.The properties of functional SAMs depend not only on the character of the tail groups at the SAM-ambient interface,but are also largely defined by their structure.In its turn,the latter parameter results from a complex interplay of the structural forces and a variety of other factors,including so called odd-even effects,viz.dependence of the SAM structure and properties on the parity of the number(odd or even)of individual building blocks in the backbone of the SAM constituents.The most impressive manifestation of the odd-even effects is the structure of aryl-substituted alkanethiolate SAMs on Au(111)and Ag(111),in which,in spite of the fact that the intermolecular interaction is mostly determined by the aryl part of the monolayers,one observes a pronounced dependence of molecular inclination and,consequently,the packing density of the SAM-forming molecules on the parity of number of methylene units in the alkyl linker.Here we review the properties of the above systems as well as address fundamental reasons behind the odd-even effects,including the existence of a so-called bending potential,which is frequently disregarded in analysis of the structure-building forces.The generality of the odd-even effects in SAMs is additionally supported by the recent data for SAMs on GaAs,scanning tunneling microscopy data for SAMs on Ag(111),and the data for the monolayers with selenolate and carboxyl anchoring groups on Au(111)and Ag(111).The implications of these effects in terms of the control over the packing density and orientation of the tail groups at the SAM-ambient interface,structural perfection,polymorphism,temperature-driven phase transitions,and SAM stability toward such factors as ionizing radiation,exchange reaction,and electrochemical desorption are discussed.These implications place the odd-even effects as an important tool for the design of functional SAMs in context of specific applications.
基金supported by the National Natural Science Foundation of China(22379041,52103313)National Key Research and Development Program of China(2022YFB2402400)+1 种基金The Science and Technology Innovation Program of Hunan Province(2023RC1045)Natural Science Foundation of Hunan Province(2021JJ30094).
文摘Stabilizing the Zn anode under high utilization rates is highly applauded yet very challenging in aqueous Zn batteries.Here,we rationally design a zincophilic short-chain aromatic molecule,4-mercaptopyridine(4Mpy),to construct self-assembled monolayers(SAMs)on a copper substrate to achieve highly utilized Zn anodes.We reveal that 4Mpy could be firmly bound on the Cu substrate via Cu–S bond to form compact and uniform SAMs,which could effectively isolate the water on the electrode surface and thus eliminate the water-related side reactions.In addition,the short-chain aromatic ring structure of 4Mpy could not only ensure the ordered arrangement of zincophilic pyridine N but also facilitate charge transfer,thus enabling uniform and rapid Zn deposition.Consequently,the Zn/4Mpy/Cu electrode not only enables the symmetric cell to stably cycle for over 180 h at 10 mA cm^(-2) under a high depth-of-discharge of 90%,but also allows the MnO_(2)-paired pouch cell to survive for 100 cycles under a high Zn utilization rate of 78.8%.An anode-free 4Mpy/Cu||graphite cell also operates for 150 cycles without obvious capacity fading at 0.1 A g^(-1).This control of interfacial chemistry via SAMs to achieve high utilization rates of metal anodes provides a new paradigm for developing high-energy metal-based batteries.
基金National Key Research and Development Program of China,Grant/Award Number:2020YFA0715000National Natural Science Foundation of China,Grant/Award Numbers:22279099,62304082,52322315Natural Science Foundation of Hubei Province,Grant/Award Number:2023AFB087。
文摘Self-assembled monolayers(SAMs)employed in inverted perovskite solar cells(PSCs)have achieved groundbreaking progress in device efficiency and stability for both single-junction and tandem configurations,owing to their distinctive and versatile ability to manipulate chemical and physical interface properties.In this regard,we present a comprehensive review of recent research advancements concerning SAMs in inverted perovskite singlejunction and tandem solar cells,where the prevailing challenges and future development prospects in the applications of SAMs are emphasized.We thoroughly examine the mechanistic roles of diverse SAMs in energy-level regulation,interface modification,defect passivation,and charge transportation.This is achieved by understanding how interfacial molecular interactions can be finely tuned to mitigate charge recombination losses in inverted PSCs.Through this comprehensive review,we aim to provide valuable insights and references for further investigation and utilization of SAMs in inverted perovskite single‐junction and tandem solar cells.