期刊文献+
共找到216篇文章
< 1 2 11 >
每页显示 20 50 100
Recent advances in design and applications of biomimetic self-assembled peptide hydrogels for hard tissue regeneration 被引量:4
1
作者 Haniyeh Najafi Mahboobeh Jafari +4 位作者 Ghazal Farahavar Samira Sadat Abolmaali Negar Azarpira Sedigheh Borandeh Raheleh Ravanfar 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第4期735-756,共22页
The development of natural biomaterials applied for hard tissue repair and regeneration is of great importance,especially in societies with a large elderly population.Self-assembled peptide hydrogels are a new generat... The development of natural biomaterials applied for hard tissue repair and regeneration is of great importance,especially in societies with a large elderly population.Self-assembled peptide hydrogels are a new generation of biomaterials that provide excellent biocompatibility,tunable mechanical stability,injectability,trigger capability,lack of immunogenic reactions,and the ability to load cells and active pharmaceutical agents for tissue regeneration.Peptide-based hydrogels are ideal templates for the deposition of hydroxyapatite crystals,which can mimic the extracellular matrix.Thus,peptide-based hydrogels enhance hard tissue repair and regeneration compared to conventional methods.This review presents three major self-assembled peptide hydrogels with potential application for bone and dental tissue regeneration,including ionic self-complementary peptides,amphiphilic(surfactant-like)peptides,and triple-helix(collagen-like)peptides.Special attention is given to the main bioactive peptides,the role and importance of self-assembled peptide hydrogels,and a brief overview on molecular simulation of self-assembled peptide hydrogels applied for bone and dental tissue engineering and regeneration. 展开更多
关键词 self-assembled peptides hydrogel Bone-repair material Dental regeneration Hard tissue engineering
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
2
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Toward Artificial Peptide Nanocapsules
3
作者 Yuan Wang Bing Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期240-243,共4页
HIGHLIGHTS The formation of peptide nanocapsules is facilitated by a gradient interface,where the differential solvent concentration drives the peptides to preferentially localize and assemble.The peptide nanocapsules... HIGHLIGHTS The formation of peptide nanocapsules is facilitated by a gradient interface,where the differential solvent concentration drives the peptides to preferentially localize and assemble.The peptide nanocapsules,characterized by their hollow structures,demonstrated potential as carriers for targeted drug delivery.1 Introduction Peptide nanocapsules are a type of nanoscale delivery system that encapsulates active substances within a shell composed of peptides,leveraging the unique properties of peptides such as biocompatibility and biodegradability[1].Historically,the development of peptide nanocapsules was inspired primordially by the natural biological processes. 展开更多
关键词 peptide nanocapsules self-assemblY Drug delivery NANOMEDICINE
下载PDF
Self-assembling peptide nanofibrous hydrogel as a promising strategy in nerve repair after traumatic injury in the nervous system 被引量:1
4
作者 Na Zhang Liumin He Wutian Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第5期717-718,共2页
Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.T... Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.The proliferation of a large number of astrocytes results in the formation of glial scar. 展开更多
关键词 NSCs self-assembling peptide nanofibrous hydrogel as a promising strategy in nerve repair after traumatic injury in the nervous system RGD
下载PDF
Experimental Study on Self-assembly of KLD-12 Peptide Hydrogel and 3-D Culture of MSC Encapsulated within Hydrogel In Vitro 被引量:4
5
作者 孙建华 郑启新 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第4期512-516,共5页
To synthesize KLD-12 peptide with sequence of AcN-KLDLKLDLKLDL-CNH2 and trigger its self-assembly in vitro, to encapsulate rabbit MSCs within peptide hydrogel for 3-D culture and to evaluate the feasibility of using i... To synthesize KLD-12 peptide with sequence of AcN-KLDLKLDLKLDL-CNH2 and trigger its self-assembly in vitro, to encapsulate rabbit MSCs within peptide hydrogel for 3-D culture and to evaluate the feasibility of using it as injectable scaffold for tissue engineering of IVD. KLD-12 peptide was purified and tested with high performance liquid chromatography (HPLC) and mass spectroscopy (MS). KLD-12 peptide solutions with concentrations of 5 g/L, 2.5 g/L and 1 g/L were triggered to self-assembly with 1 xPBS in vitro, and the self-assembled peptide hydrogel was morphologically observed. Atomic force microscope (AFM) was employed to examine the inner structure of self-assembled peptide hydrogel. Mesenchymal stem cells (MSCs) were encapsulated within peptide hydrogel for 3-D culture for 2 weeks. Calcein-AM/PI fluorescence staining was used to detect living and dead cells. Cell viability was observed to evaluate the bioactivity of MSCs in KLD-12 peptide hydrogel. The results of HPLC and MS showed that the relative molecular mass of KLD-12 peptide was 1467.83, with a purity quotient of 95.36%. KLD-12 peptide at 5 g/L could self-assemble to produce a hydrogel, which was structurally integral and homogeneous and was able to provide sufficient cohesion to retain the shape of hydrogel. AFM demonstrated that the self-assembly of KLD-12 peptide hydrogel was successful and the assembled material was composed of a kind of nano-fiber with a diameter of 3040 nm and a length of hundreds of nm. Calcein-AM/PI fluorescence staining revealed that MSCs in KLD-12 peptide hydrogel grew well. Cell activity detection exhibited that the A value increased over the culture time. It is concluded that KLD-12 peptide was synthesized successfully and was able to self-assemble to produce nano-fiber hydrogel in vitro. MSCs in KLD-12 peptide hydrogel grew well and proliferated with the culture time. KLD-12 peptide hydrogel can serve as an excellent injectable material of biological scaffolds in tissue engineering of IVD. 展开更多
关键词 peptide self-assemblY biological scaffolds three-dimensional cell culture
下载PDF
Self-assembled IKVAV Peptide Nanofibers Promote Adherence of PC12 Cells 被引量:1
6
作者 吴永超 郑启新 +3 位作者 杜靖远 宋玉林 吴斌 郭晓东 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第5期594-596,共3页
Lack of biocompatibility and bioactivity is a big problem for the synthetic materials that have been generated for neural tissue engineering. To get around the problem and generate better scaffold for neural tissue re... Lack of biocompatibility and bioactivity is a big problem for the synthetic materials that have been generated for neural tissue engineering. To get around the problem and generate better scaffold for neural tissue repair, we intended to generate nano-fibers by self-assembly of polypeptide IKVAV. Bioactive IKVAV Peptide-Amphiphile (IKVAV-PA) was first synthesized and purified, the property of which was analyzed and determined by high-performance liquid chromatography (HPLC) and mass spectrometry (MS). Then, by addition of hydrogen chloride (HC1), self-assembly of IKVAV-PA was induced in vitro and nano-fibers formed as shown by transmission electron microscopy (TEM). The effect of IKVAV nanofibers on adherence of PCI2 cells was assayed in cell culture and the results showed that the rates of adherence of PC12 increased significantly when the density of IKVAV was within a certain range (0.58 μg/cm^2 to 15.6 μg/cm^2). However, its effect on the rates of adherence did not significantly alter with time, whether after 1 hour or 3 hours of culture. In general, we showed that IKVAV-PA can successfully self-assemble to form nanofiber, and promote rapid and stable adherence of PC12 cells, and the effect of the self-assembled IKVAV to promote PCI2 cells adherence is dosage-dependent within a certain range of densities. 展开更多
关键词 neural tissue engineering peptide self-assembly NANOFIBER cell adherence
下载PDF
Cartilage-inspired self-assembly glycopeptide hydrogels for cartilage regeneration via ROS scavenging 被引量:1
7
作者 Zhijian Zhao Xiaowei Xia +9 位作者 Junlin Liu Mingzhuang Hou Yang Liu Zhangzhe Zhou Yong Xu Fan He Huilin Yang Yijian Zhang Changshun Ruan Xuesong Zhu 《Bioactive Materials》 SCIE CSCD 2024年第2期319-332,共14页
Cartilage injury represents a frequent dilemma in clinical practice owing to its inherently limited self-renewal capacity.Biomimetic strategy-based engineered biomaterial,capable of coordinated regulation for cellular... Cartilage injury represents a frequent dilemma in clinical practice owing to its inherently limited self-renewal capacity.Biomimetic strategy-based engineered biomaterial,capable of coordinated regulation for cellular and microenvironmental crosstalk,provides an adequate avenue to boost cartilage regeneration.The level of oxidative stress in microenvironments is verified to be vital for tissue regeneration,yet it is often overlooked in engineered biomaterials for cartilage regeneration.Herein,inspired by natural cartilage architecture,a fibril-network glycopeptide hydrogel(Nap-FFGRGD@FU),composed of marine-derived polysaccharide fucoidan(FU)and naphthalenephenylalanine-phenylalanine-glycine-arginine-glycine-aspartic peptide(Nap-FFGRGD),was presented through a simple supramolecular self-assembly approach.The Nap-FFGRGD@FU hydrogels exhibit a native cartilage-like architecture,characterized by interwoven collagen fibers and attached proteoglycans.Beyond structural simulation,fucoidan-exerted robust biological effects and Arg-Gly-Asp(RGD)sequence-provided cell attachment sites realized functional reinforcement,synergistically promoted extracellular matrix(ECM)production and reactive oxygen species(ROS)elimination,thus contributing to chondrocytes-ECM harmony.In vitro co-culture with glycopeptide hydrogels not only facilitated cartilage ECM anabolic metabolism but also scavenged ROS accumulation in chondrocytes.Mechanistically,the chondro-protective effects induced by glycopeptide hydrogels rely on the activation of endogenous antioxidant pathways associated with nuclear factor erythroid 2-related factor 2(NRF2).In vivo implantation of glycopeptide hydrogels successfully improved the de novo cartilage generation by 1.65-fold,concomitant with coordinately restructured subchondral bone structure.Collectively,our ingeniously crafted bionic glycopeptide hydrogels simultaneously rewired chondrocytes’function by augmenting anabolic metabolism and rebuilt ECM microenvironment via preserving redox equilibrium,holding great potential for cartilage tissue engineering. 展开更多
关键词 Cartilage repair self-assembly glycopeptide hydrogels FUCOIDAN ROS scavenging
原文传递
Preparation of conductive and transparent dipeptide hydrogels for wearable biosensor 被引量:4
8
作者 Yafeng Jing Anhe Wang +5 位作者 Jieling Li Qi Li Qingquan Han Xuefang Zheng Hongyu Cao Shuo Bai 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第1期153-162,共10页
Conductive and transparent dipeptide hydrogels are desirable building blocks to prepare soft electronic devices and wearable biosensors due to their excellent biocompatibility,multi-functionality,and physiochemical pr... Conductive and transparent dipeptide hydrogels are desirable building blocks to prepare soft electronic devices and wearable biosensors due to their excellent biocompatibility,multi-functionality,and physiochemical properties similar to those of body tissues.However,the preparation of such hydrogels featuring high conductivity and transparency is a huge challenge because of the hydrophobic feature of conductive additives making the doping process difficult.To overcome this issue,hydrophilic conductive polydopamine(PDA)-doped polypyrrole(PPy)nanoparticles are introduced into the dipeptide hydrogel networks to form conductive nanofibrils in situ to achieve a good level of hydrophilic templating of the hydrogel networks.This tech-nique creates a complete conductive network and allows visible light to pass through.The strategy proposed herein not only endows the dipeptide hydrogel with good conductivity and high transparency,but also provides a great potential application of conductive dipeptide hydrogels for body-adhered signal detection,as evidenced by the experimental data. 展开更多
关键词 Conductivity Transparency peptide hydrogel Polypyrrole-polydopamine nanoparticles Wearable biosensor
下载PDF
Peptide self‐assembly as a strategy for facile immobilization of redox enzymes on carbon electrodes
9
作者 Itzhak Grinberg Oren Ben‐Zvi +1 位作者 Lihi Adler‐Abramovich Iftach Yacoby 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期15-30,共16页
Redox-enzyme‐mediated electrochemical processes such as hydrogen production,nitrogen fixation,and CO_(2) reduction are at the forefront of the green chemistry revolution.To scale up,the inefficient two‐dimensional(2... Redox-enzyme‐mediated electrochemical processes such as hydrogen production,nitrogen fixation,and CO_(2) reduction are at the forefront of the green chemistry revolution.To scale up,the inefficient two‐dimensional(2D)immobilization of redox enzymes on working electrodes must be replaced by an efficient dense 3D system.Fabrication of 3D electrodes was demonstrated by embedding enzymes in polymer matrices.However,several requirements,such as simple immobilization,prolonged stability,and resistance to enzyme leakage,still need to be addressed.The study presented here aims to overcome these gaps by immobilizing enzymes in a supramolecular hydrogel formed by the self‐assembly of the peptide hydrogelator fluorenylmethyloxycarbonyldiphenylalanine.Harnessing the self‐assembly process avoids the need for tedious and potentially harmful chemistry,allowing the rapid loading of enzymes on a 3D electrode under mild conditions.Using the[FeFe]hydrogenase enzyme,high enzyme loads,prolonged resistance against electrophoresis,and highly efficient hydrogen production are demonstrated.Further,this enzyme retention is shown to arise from its interaction with the peptide nanofibrils.Finally,this method is successfully used to retain other redox enzymes,paving the way for a variety of enzyme‐mediated electrochemical applications. 展开更多
关键词 3D electrode enzymes encapsulation H2 production HYDROGENASE peptide hydrogel
下载PDF
A novel artificial nerve graft for repairing longdistance sciatic nerve defects:a self-assembling peptide nanofiber scaffold-containing poly (lactic-co-glycolic acid) conduit 被引量:5
10
作者 Xianghai Wang Mengjie Pan +7 位作者 Jinkun Wen Yinjuan Tang Audra D.Hamilton Yuanyuan Li Changhui Qian Zhongying Liu Wutian Wu Jiasong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第24期2132-2141,共10页
In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-... In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA conduit implantation group, the SPC implantation group had a larger number of growing and extending axons, a markedly increased diameter of regenerated axons and a greater thickness of the myelin sheath in the conduit. Furthermore, there was an increase in the size of the neuromuscular junction and myofiber diameter in the target muscle. These findings suggest that the novel artificial SPC nerve graft can promote axonal regeneration and remyelination in the transected peripheral nerve and can be used for repairing peripheral nerve injury. 展开更多
关键词 nerve regeneration peripheral nerve defect artificial nerve graft poly(lactic-co-glycolic acid) self-assembling peptide nanofiber scaffold REMYELINATION axon myelin neuromuscular junction NSFC grants neural regeneration
下载PDF
Biocompatibility of KLD-12 Peptide Hydrogel as a Scaffold in Tissue Engineering of Intervertebral Discs in Rabbits 被引量:2
11
作者 孙建华 郑启新 +3 位作者 吴永超 刘郁东 郭晓东 伍卫刚 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2010年第2期173-177,共5页
KLD-12 peptide with a sequence of AcN-KLDLKLDLKLDL-CNH2 was synthesized and its biocompatibility was assessed in animals. Rabbit MSCs were cultured in the hydrogel for 2 weeks. Live cells were counted by using Calcein... KLD-12 peptide with a sequence of AcN-KLDLKLDLKLDL-CNH2 was synthesized and its biocompatibility was assessed in animals. Rabbit MSCs were cultured in the hydrogel for 2 weeks. Live cells were counted by using Calcein-AM/P1 fluorescence staining. MTT was employed to assess the viability of MSCs cultured in KLD-12 peptide solution of 0.01%, 0.03%, and 0.05%. Hemolysis test, skin irritation test and implantation test were conducted to evaluate its biocompatibility with host tissues. Our results demonstrated that the MSCs in hydrogel grew well and maintained round shape. Cell survival rate was 92.15% (mean: 92.15%±1.17%) at the 7th day and there was no difference in survival rate between day 7 and day 14. Cell proliferation test showed that the A value of the KLD-12 solutions was not significantly different from that of control groups (complete culture media) (P〉0.05) at the 24th and 48th h. The hemolysis rate of KLD-12 solution was 0.112%. Skin irritation test showed that the skin injected with KLD-12 solution remained normal and the score of skin irritation was 0. The histological examination with HE staining exhibited that the skin layers were clear and there was no infiltration with neutrophilic granulocytes and lymphocytes. It is concluded that KLD-12 peptide hydrogel bad a good biocompatibility with host rabbit and MSCs, and KLD-12 pep- tide hydrogel can provide an appropriate microenvironment for MSCs. 展开更多
关键词 peptide self-assembly biocompatible materials intervertebral disc
下载PDF
Hierarchical processes in β-sheet peptide self-assembly from the microscopic to the mesoscopic level 被引量:1
12
作者 邓礼 徐海 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期299-305,共7页
Under appropriate physicochemical conditions, short peptide fragments and their synthetic mimics have been shown to form elongated cross-fl nanostructures through self-assembly. The self-assembly process and the resul... Under appropriate physicochemical conditions, short peptide fragments and their synthetic mimics have been shown to form elongated cross-fl nanostructures through self-assembly. The self-assembly process and the resultant peptide nanos- tructures are not only related to neurodegenerative diseases but also provide inspiration for the development of novel bionanomaterials. Both experimental and theoretical studies on peptide self-assembly have shown that the self-assembly process spans multiple time and length scales and is hierarchical, β-sheet self-assembly consists of three sub-processes from the microscopic to the mesoscopic level: β-sheet locking, lateral stacking, and morphological transformation. De- tailed atomistic simulation studies have provided insight into the early stages of peptide nanostructure formation and the interplay between different non-covalent interactions at the microscopic level. This review gives a brief introduction of the hierarchical peptide self-assembly process and focuses on the roles of various non-covalent interactions in the sub-processes based on recent simulation, experimental, and theoretical studies. 展开更多
关键词 peptide self-assemblY hierarchical process NANOSTRUCTURES
下载PDF
Two-dimensional Effects of Hydrogel Self-organized from IKVAV-containing Peptides on Growth and Differentiation of NSCs 被引量:1
13
作者 宋玉林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期186-192,共7页
The neural stem cells (NSCs) were seeded in the surface layer of hydrogels made of IKVAV-containing peptide amphiphile. Two-dimensional effects of hydrogel on growth and differentiation of NSCs were investigated. Pe... The neural stem cells (NSCs) were seeded in the surface layer of hydrogels made of IKVAV-containing peptide amphiphile. Two-dimensional effects of hydrogel on growth and differentiation of NSCs were investigated. Peptide was synthesized in solid way. Cells were harvested from the cerebral cortex of neonatal mice, identified by immunohistochemical methods. Cells were incubated in the surface layer of self-assembled peptide hydrogel and coverslips for seven days respectively,detected immunocytochemically for NF and GFAP. The molecular weight (Mw) of Peptide was 1438 and purity was 95.22%. Cells were identified as Nestin-positive NSCs. TEM showed that hydrogel was composed of interactive nanofibers. NSCs extended processes, and were able to be dif- ferentiated into NF-positive neurons with red fluorescence and GFAP-positive astrocytes with green one in the surface of hydrogel. However, NSCs only formed undifferentiated neurospheres in the surface layer of coverslips. Results indicate that the self-assembled hydrogel from peptide amphiphile has good cyto-compatibility to NSCs and induced their differentiation. 展开更多
关键词 nerve tissue engineering hydrogel self-assemblY neural stem cells
下载PDF
Chondrogenesis of Precartilaginous Stem Cells in KLD-12 Self-assembling Peptide Nanofiber Scaffold Loading TGF-β3 Gene 被引量:1
14
作者 游洪波 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期634-640,共7页
The effect of culture in KLD-12 self-assembling peptide nanofiber scaffold containing TGF-β3 gene on differentiation of precartilaginous stem cells (PSCs) into chondrocytes was studied. KLD-12 was synthesized by so... The effect of culture in KLD-12 self-assembling peptide nanofiber scaffold containing TGF-β3 gene on differentiation of precartilaginous stem cells (PSCs) into chondrocytes was studied. KLD-12 was synthesized by solid-state method. After TGF-β3 plasmid was loaded into KLD-12 self-assembling peptide nanofiber scaffold, DNA release ability was investigated. PSCs and hTGF-β3 gene were loaded into KLD-12 3-D scaffold, and MTT assay was performed to investigate the cell proliferation, and ELASA assay was used to investigate the expression of TGF-β3. Specific cartilage matrix was examined by quantitative real-time PCR, immunohistochemistry and Alcian Blue staining. Compared with control group, DNA synthesis level of PSCs reached the peak within 3 days when PSCs were cultured in self-assembling peptide nanofiber scaffold loading TGF-β3 plasmid, and maintained this high level within 2 weeks. MTT results showed that the proliferation ability of experimental group was statistically higher than that in control group (P〈0.05). Quantitative real-time PCR suggested that the percentage of TGF-β3 positive PSCs in experimental group was higher than that in control group (P〈0.01). ELISA assay showed that the TGF-β3 protein level increased in supernatant of experimental group's PSCs, reached the peak after 72 h and then declined a little to the plateau phase. Compared with the control group, the specific gene of chondrocyte typical extracellular matrix significantly up-regulated (P〈0.01). The results showed that PSCs differentiated into chondrocytes in self-assembling peptide nanofiber scaffold loading TGF-β3 plasmid, which provided a fresh approach to cartilage tissue engineering. 展开更多
关键词 precartilaginous stem cells tissue engineering SCAFFOLD GENE self-assembled peptide transforming growth factor
下载PDF
Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides
15
作者 邓礼 赵玉荣 +2 位作者 周鹏 徐海 王延颋 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期18-31,共14页
Nanostructures self-assembled by cross-β peptides with ordered structures and advantageous mechanical properties have many potential applications in biomaterials and nanotechnologies. Quantifying the intra-and inter-... Nanostructures self-assembled by cross-β peptides with ordered structures and advantageous mechanical properties have many potential applications in biomaterials and nanotechnologies. Quantifying the intra-and inter-molecular driving forces for peptide self-assembly at the atomistic level is essential for understanding the formation mechanism and nanomechanics of various morphologies of self-assembled peptides. We investigate the thermodynamics of the intra-and inter-sheet structure formations in the self-assembly process of cross-β peptide KⅢIK by means of steered molecular dynamics simulation combined with umbrella sampling. It is found that the mechanical properties of the intra-and inter-sheet structures are highly anisotropic with their intermolecular bond stiffness at the temperature of 300 K being 5.58 N/m and 0.32 N/m, respectively. This mechanical anisotropy comes from the fact that the intra-sheet structure is stabilized by enthalpy but the inter-sheet structure is stabilized by entropy. Moreover, the formation process of KⅢIK intra-sheet structure is cooperatively driven by the van der Waals (VDW) interaction between the hydrophobic side chains and the electrostatic interaction between the hydrophilic backbones, but that of the inter-sheet structure is primarily driven by the VDW interaction between the hydrophobic side chains. Although only peptide KⅢIK is studied, the qualitative conclusions on the formation mechanism should also apply to other cross-β peptides. 展开更多
关键词 molecular dynamics simulation peptide self-assembly intermolecular force THERMODYNAMICS
下载PDF
Microrheology and Release Behaviors of Self-Assembled Steroid Hydrogels
16
作者 W. Liang J. R. Guman-Sepulveda +2 位作者 S. He A. Dogariu J. Y. Fang 《Journal of Materials Science and Chemical Engineering》 2015年第8期6-15,共10页
A hydrogel is formed by the self-assembly of sodium deoxycholate (NaDC) in aqueous solution with sodium chloride at pH-7.0. The NaDC hydrogel made of the three-dimensional network of nanofibers shows pH-dependent swel... A hydrogel is formed by the self-assembly of sodium deoxycholate (NaDC) in aqueous solution with sodium chloride at pH-7.0. The NaDC hydrogel made of the three-dimensional network of nanofibers shows pH-dependent swelling behaviors. Polystyrene particles with a diameter of 100 nm and doxorubicin hydrochloride (DOX) can be easily loaded into the NaDC hydrogel through swelling. By using the loaded polystyrene particles as a light scattering probe, we study the microrheology of the NaDC hydrogel, showing complex viscoelastic properties. The viscous component dominates at both low and high frequencies, while the elastic component dominates in the intermediate range. The cavity size of the nanofiber network can also be estimated to be ~180 nm. We show that the loaded DOX can be slowly released from the hydrogels into aqueous solution. The release profile of DOX is found to depend on the pH value of the solution. 展开更多
关键词 Sodium DEOXYCHOLATE self-assembly hydrogelS MICRORHEOLOGY SWELLING Release
下载PDF
Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution
17
作者 邓礼 赵玉荣 +2 位作者 周鹏 徐海 王延颋 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期549-560,共12页
Besides our previous experimental discovery (Zhao Y R, et al. 2015 Langmuir, 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KIIIIK (KI4K... Besides our previous experimental discovery (Zhao Y R, et al. 2015 Langmuir, 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KIIIIK (KI4K) in aqueous solution, further experiments reported in this work demonstrate that ACN can also tune the mass of the self-assembled nanostructures. To understand the microscopic mechanism how ACN molecules interfere peptide self-assembly process, we conducted a series of molecular dynamics simulations on a monomer, a cross-β sheet structure, and a proto-fibril of KI4K in pure water, pure ACN, and ACN-water mixtures, respectively. The simulation results indicate that ACN enhances the intra-sheet interaction dominated by the hydrogen bonding (H-bonding) interactions between peptide backbones, but weakens the inter-sheet interaction dominated by the interactions between hydrophobic side chains. Through analyzing the correlations between different groups of solvent and peptides and the solvent behaviors around the proto-fibril, we have found that both the polar and nonpolar groups of ACN play significant roles in causing the opposite effects on intermolecular interactions among peptides. The weaker correlation of the polar group of ACN than water molecule with the peptide backbone enhances H-bonding interactions between peptides in the proto-fibril. The stronger correlation of the nonpolar group of ACN than water molecule with the peptide side chain leads to the accumulation of ACN molecules around the proto-fibril with their hydrophilic groups exposed to water, which in turn allows more water molecules close to the proto-fibril surface and weakens the inter-sheet interactions. The two opposite effects caused by ACN form a microscopic mechanism clearly explaining our experimental observations. 展开更多
关键词 solvent effect peptide self-assembly molecular dynamics simulation
全文增补中
Tailoring supramolecular antimicrobial peptides:from self-assembled nanoarchitectures to activities
18
作者 Saisai Wang Jian Wu +1 位作者 Yuan Tian Shaobing Zhou 《Science China Materials》 SCIE EI CAS 2024年第12期3763-3779,共17页
The emergence of antibiotic-resistant bacteria has become a major threat to global public health and has prompted the discovery of antibiotic alternatives.Natural antimicrobial peptides(AMPs)confer a unique non-specif... The emergence of antibiotic-resistant bacteria has become a major threat to global public health and has prompted the discovery of antibiotic alternatives.Natural antimicrobial peptides(AMPs)confer a unique non-specific membrane rupture mechanism,showing great potential in killing drug-resistant bacteria.However,natural AMPs have certain weaknesses,including stability and toxicity issues,which seriously hinder their in vivo applications.Synthetic AMPs possess similar characteristics to natural AMPs,including positive charges,amphiphilicity,and the ability to fold into diverse secondary structures.These properties are essential for AMPs penetration into membranes,allowing them to exhibit antimicrobial effects.Moreover,supramolecular self-assembly,facilitated by hydrophobic interaction,hydrogen bonding,π-πstacking,and electrostatic interaction,can generate nanoparticles,nanotubes,nanofibers,and hydrogels with well-defined nanoarchitectures.Utilizing peptide self-assembly to form various nanoarchitectures is an effective approach for generating antibacterial nanomaterials,offering potential advantages such as enhanced antibacterial properties,improved stability,and reduced cytotoxicity.This review highlights recent advancements in tailoring supramolecular AMPs to create diverse nano-architectures for combating infectious diseases. 展开更多
关键词 peptide self-assembly nanoarchitectures antimicrobial activity antimicrobial peptides multidrug-resistant bacteria
原文传递
Ultrasound-triggered biomimetic ultrashort peptide nanofiber hydrogels promote bone regeneration by modulating macrophage and the osteogenic immune microenvironment 被引量:1
19
作者 Fan Zhang Mingchen Lv +10 位作者 Siyuan Wang Mengyao Li Yu Wang Congjiao Hu Wei Hu Xuekui Wang Xiaogang Wang Zhiduo Liu Zhen Fan Jianzhong Du Yao Sun 《Bioactive Materials》 SCIE CSCD 2024年第1期231-246,共16页
The immune microenvironment plays a vital role in bone defect repair.To create an immune microenvironment that promotes osteogenesis,researchers are exploring ways to enhance the differentiation of M2-type macrophages... The immune microenvironment plays a vital role in bone defect repair.To create an immune microenvironment that promotes osteogenesis,researchers are exploring ways to enhance the differentiation of M2-type macrophages.Functional peptides have been discovered to effectively improve this process,but they are limited by low efficiency and rapid degradation in vivo.To overcome these issues,peptide with both M2 regulatory and self-assembly modules was designed as a building block to construct an ultrasound-responsive nanofiber hydrogel.These nanofibers can be released from hydrogel in a time-dependent manner upon ultrasound stimulation,activating mitochondrial glycolytic metabolism and the tricarboxylic acid cycle,inhibiting reactive oxygen species production and enhancing M2 macrophage polarization.The hydrogel exhibits advanced therapeutic potential for bone regeneration by triggering M2 macrophages to secrete BMP-2 and IGF-I,accelerating the differentiation of bone marrow mesenchymal stem cells(BMSCs)into osteoblasts.Thus,modularly designed biomimetic ultrashort peptide nanofiber hydrogels provide a novel strategy to rebuild osteogenic immune microenvironments for bone repair. 展开更多
关键词 peptide Nanofiber hydrogel Immune microenvironment Bone tissue regeneration
原文传递
Multistep Desolvation as a Fundamental Principle Governing Peptide Self-Assembly Through Liquid-Liquid Phase Separation 被引量:1
20
作者 Chengqian Yuan Ruirui Xing +3 位作者 Jie Cui Wei Fan Junbai Li Xuehai Yan 《CCS Chemistry》 CSCD 2024年第1期255-265,共11页
Biomolecular self-assembly based on peptides and proteins is a general phenomenon encountered in natural and synthetic systems.Liquid–liquid phase separation(LLPS)is intimately involved in biomolecular self-assembly,... Biomolecular self-assembly based on peptides and proteins is a general phenomenon encountered in natural and synthetic systems.Liquid–liquid phase separation(LLPS)is intimately involved in biomolecular self-assembly,yet the key factors at a molecular scale activating or modulating such a process remain largely elusive.Herein,we discovered in our experiments that multistep desolvation is fundamental to the formation and evolution of peptide-rich droplets:The first step was partial desolvation of peptides to form peptide clusters,and the second step was selective desolvation of hydrophobic groups within clusters to trigger LLPS and the formation of peptiderich droplets,followed by complete desolvation of droplets,initiating the nucleation of peptide selfassembly.Manipulation of the degree of desolvation at different stages was an effective strategy to control the self-assembly pathways and polymorphisms.This study sheds light on the molecular origin of LLPS-mediated self-assembly distinct from classical one-step self-assembly and paves the way for the precise control of supramolecular self-assembly. 展开更多
关键词 peptide liquid-liquid phase separation multistep desolvation NANOSTRUCTURES self-assemblY
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部