Based on the characteristics of pile-soil interaction and the Mohr-Coulomb strength theory,a new method of determining the side friction at a pile-soil interaction is proposed.Combined with the actual engineering case...Based on the characteristics of pile-soil interaction and the Mohr-Coulomb strength theory,a new method of determining the side friction at a pile-soil interaction is proposed.Combined with the actual engineering cases,the effectiveness of the analogue test method is verified by comparing it with the traditional anchor pile method and self-balanced method.Taking the self-balanced test of the bridge pile foundation in the Songhua River as an example,the conversion factor of sandy soil and weathered mudstone are confirmed by the analogue test method.The results show that the conversion factor of sandy soil and weathered mudstone in the Songhua River area should consider the geological conditions and the construction technology,etc.The standard values are relatively conservative.It is suggested that the engineering application should be properly revised.The recommended range of the conversion factor of sandy soil in this area is 0.65 to 0.85,and that of weathered mudstone is 1.0.展开更多
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subject...Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.展开更多
In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d c...In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d cone p e n e tra tio nte s t (CPT) resu lts w ere used as in p u t variables for pred ictio n o f pile bearin g capacity. The d ata u se d w erecollected from th e existing litera tu re an d consisted o f 50 case records. The application o f LSSVM w ascarried o u t by dividing th e d ata into th re e se ts: a train in g se t for learning th e pro b lem an d obtain in g arelationship b e tw e e n in p u t variables an d pile bearin g capacity, and testin g an d validation sets forevaluation o f th e predictive an d g en eralization ability o f th e o b tain ed relationship. The predictions o f pilebearing capacity by LSSVM w ere evaluated by com paring w ith ex p erim en tal d ata an d w ith th o se bytrad itio n al CPT-based m eth o d s and th e gene ex pression pro g ram m in g (GEP) m odel. It w as found th a t th eLSSVM perform s w ell w ith coefficient o f d eterm in atio n , m ean, an d sta n d ard dev iatio n equivalent to 0.99,1.03, an d 0.08, respectively, for th e testin g set, an d 1, 1.04, an d 0.11, respectively, for th e v alidation set. Thelow values o f th e calculated m ean squared e rro r an d m ean ab so lu te e rro r indicated th a t th e LSSVM w asaccurate in p redicting th e pile bearing capacity. The results o f com parison also show ed th a t th e p roposedalg o rith m p red icted th e pile bearin g capacity m ore accurately th a n th e trad itio n al m eth o d s including th eGEP m odel.展开更多
Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such larg...Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles.展开更多
Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is...Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks,the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed,and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake,with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface,while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure,local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside,and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs,the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated.展开更多
Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed ...Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.展开更多
Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address...Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types.展开更多
Cement-mixed piles,as countermeasure against liquefaction of silt and sand ground,can improve the shear strength and bearing capacity of foundation soil,meaning cement-mixed piles are capable of resisting displacement...Cement-mixed piles,as countermeasure against liquefaction of silt and sand ground,can improve the shear strength and bearing capacity of foundation soil,meaning cement-mixed piles are capable of resisting displacement when an earthquake happens. However,investigations of cement-mixed piles by experimental methods such as the shaking table test is few and far between. It is especially true for the seismic performance of cement-mixed piles in liquefiable railway foundations in high seismic intensity regions. To this end,a cross-section of the Yuxi-Mengzi railway was selected as the prototype and studied by the shaking table test in this study. The results showed that composite foundation of cementmixed piles was not liquefied when the seismic acceleration was lower than 0. 30g. In the process of acceleration increasing from 0. 30g at 2Hz to 0. 60g at 3Hz,the upper middle silt outside slope toe was partly liquefied. The foundation soil under the shoulders and center of subgrade was far from the initial liquefaction criterion during the test. Cementmixed piles can effectively reduce the embankment settlement and differential settlement. It can be concluded that, the design of cement-mixed piles can ensure the seismic performance of the subgrade,and satisfy the seismic design requirements of the YuxiMengzi railway in areas of VIII degrees seismic fortification intensity.展开更多
The methodology of predicting pile shaft skin ultimate friction has been studied in a systematic way. In the light of that, the analysis of the pile shaft resistance for bored and cast in situ piles in cohesive soil...The methodology of predicting pile shaft skin ultimate friction has been studied in a systematic way. In the light of that, the analysis of the pile shaft resistance for bored and cast in situ piles in cohesive soils was carried out thoroughly in the basis of field performance data of 10 fully instrumented large diameter bored piles (LDBPs) used as the bridge foundation. The undrained strength index μ in term of cohesive soils was brought forward in allusion to the cohesive soils in the consistence plastic state, and can effectively combine the friction angle and the cohesion of cohesive soils in undrained condition. And that the classical ' α method' was modified much in effect to predict the pile shaft skin friction of LDBPs in cohesive soils. Furthermore, the approach of standard penetration test (SPT) N value used to estimate the pile shaft skin ultimate friction was analyzed, and the calculating formulae were established for LDBPs in clay and silt clay respectively.展开更多
Two full-scale experiments using controlled blasting were conducted in the Port of Tokachi on Hokkaido Island, Japan,to assess the behavior of piles and pipelines subjected to lateral spreading.Test specimens were ext...Two full-scale experiments using controlled blasting were conducted in the Port of Tokachi on Hokkaido Island, Japan,to assess the behavior of piles and pipelines subjected to lateral spreading.Test specimens were extensively instrumented with strain gauges to measure the distribution of moment during lateral spreading.This allowed us to compute the loading condition,as well as to conduct damage and performance assessments on the piles and pipelines.This paper presents the test results and discussions on the response of single piles and pipelines observed from the full-scale experiments.Based on the test results,it can be concluded that using controlled blasting successfully liquefied the soil,and subsequently induced lateral spreading.The movements of the single pile,as well as the transverse pipelines,were approximately the same as the free field soil movement.Observed moment distribution of the single pile indicated that global translation of the liquefied soil layer provided insignificant force to the pile.In addition,the degree of fixity at the pile tip significantly affected the moment along the pile as well as the pile head displacement.The pile with a higher degree of fixity at the pile tip had smaller pile head displacement but larger maximum moment.展开更多
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a...This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.展开更多
Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppresse...Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.展开更多
The model test result of earth force in the side of anti-slide pile of anchor bars was introduced.There are three groups of the tests.The loads were on the back side of the slope in two groups.The other one was loaded...The model test result of earth force in the side of anti-slide pile of anchor bars was introduced.There are three groups of the tests.The loads were on the back side of the slope in two groups.The other one was loaded just behind the pile by the jack.In order to get the force of the soil,some earth-pressure boxes were used to get the earth pressure on the side of the piles.The part of the max pressure and the earth pressure was mainly focused under the slip line展开更多
The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure ...The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure mechanism, as well as overreliance on pile load tests, have led to conservative designs and limited application. This study performs full-scale field load tests on instrumented squeezed branch piles and shows that the shaft force curves have obvious drop steps at the branch position, indicating that the branches can effectively share the pile top load. The effects of branch position, spacing, number and diameter on the pile bearing capacity are analyzed numerically. The numerical results indicate that the squeezed branch piles have two types of failure mechanisms, i.e. individual branch failure mechanism and cylindrical failure mechanism. Further research should focus on the development of the calculation method to determine the bearing capacities of squeezed branch piles considering these two failure mechanisms.展开更多
This paper describes model tests of single piles subjected to vertical cyclic compressive loading for three kinds of topography: sloping ground, level ground, and inclined bedrock. Comprehensive dynamic responses invo...This paper describes model tests of single piles subjected to vertical cyclic compressive loading for three kinds of topography: sloping ground, level ground, and inclined bedrock. Comprehensive dynamic responses involving cyclic effects and vibration behaviours are studied under various load combinations of dynamic amplitude, mean load,frequency and number of cycles. Test results show that permanent settlement can generally be predicted with a quadratic function or power function of cycles.Sloping ground topography produces more pronounced settlement than level ground under the same load condition. For vibration behaviour,displacement amplitude is weakly affected by the number of cycles, while load amplitude significantly influences dynamic responses. Test results also reveal that increasing load amplitude intensifies nonlinearity and topography effects. The strain distribution in a pile and soil stress at the pile tip are displayed to investigate the vibration mechanism accounting for sloping ground effects. Furthermore, the dynamic characteristics among three kinds of topography in the elastic stage are studied using a three-dimensional finite method. Numerical results are validated by comparing with experimental results for base inclination topography. An inclined soil profile boundary causes non-axisymmetric resultant deformation, though a small difference in vertical displacement is observed.展开更多
Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under...Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder.展开更多
An experimental program is conducted on model piled rafts in sand soil.The experimental program is aimed to investigate the behavior of raft on settlement reducing piles.The testing program includes tests on models of...An experimental program is conducted on model piled rafts in sand soil.The experimental program is aimed to investigate the behavior of raft on settlement reducing piles.The testing program includes tests on models of single pile,unpiled rafts and rafts on 1,4,9,or 16 piles.The model piles beneath the rafts are closed ended displacement piles installed by driving.Three lengths of piles are used in the experiments to represent slenderness ratio,L/D,of 20,30 and 50,respectively.The dimensions of the model rafts are 30 cm×30 cm with different thickness of 0.5 cm,1.0 cm or 1.5 cm.The raft-soil stiffness ratios of the model rafts ranging from 0.39 to 10.56 cover flexible to very stiff rafts.The improvement in the ultimate bearing capacity is represented by the load improvement ratio,LIR,and the reductions in average settlement and differential settlement are represented by the settlement ratio,SR,and the differential settlement ratio,DSR,respectively.The effects of the number of settlement reducing piles,raft relative stiffness,and the slenderness ratio of piles on the load improvement ratio,settlement ratio and differential settlement ratio are presented and discussed.The results of the tests show the effectiveness of using piles as settlement reduction measure with the rafts.As the number of settlement reducing piles increases,the load improvement ratio increases and the differential settlement ratio decreases.展开更多
Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(d...Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown.展开更多
Despite significant advancements in in situ test techniques,construction practices,understanding of rock joint and rock mass behaviours,and numerical analysis methods,the design of bored concrete cast-insitu piles in ...Despite significant advancements in in situ test techniques,construction practices,understanding of rock joint and rock mass behaviours,and numerical analysis methods,the design of bored concrete cast-insitu piles in rock is still largely based on the assessment of bearing capacity.However,for many of the rock conditions encountered,the bearing capacity of piles is a nebulous concept and a figment of the designer’s imagination.Even if it can be reasonably quantified,it has little,if any,significance to the performance of a pile in rock.The load carrying capacity of even low strength rock(in most situations)is far in excess of the strength of the structure(for example,a building column)transmitting the load.Unsatisfactory performance of a pile in rock is usually a displacement issue and is a function of rock mass stiffness rather than rock mass strength.In addition,poor pile performance is much more likely to result from poor construction practices than excessive displacement of the rock mass.Exceptions occur for footings that are undermined,or where unfavourable structure in the rock allows movement towards a free surface to occur.Standards,codes of practices,reference books and other sources of design information should focus foundation design in rock on displacement rather than strength performance.Ground investigations should measure rock mass stiffness and defect properties,as well as intact rock strength.This paper summarises the fundamental concepts relating to performance of piles in rock and provides a basis for displacement focused design of piles in rock.It also presents comments relating to how piles are modelled in widely used commercial finite element software for soil-structure interaction analysis,within the context of the back-analysis of a pile load test,and proposes recommendations for pile analysis and design.展开更多
Topography effects on the vertical vibration responses of pile group are revealed though numerical analysis and model tests.First,a series of model tests with different topography of ground and bedrock are conducted.T...Topography effects on the vertical vibration responses of pile group are revealed though numerical analysis and model tests.First,a series of model tests with different topography of ground and bedrock are conducted.The results indicate that displacement amplitude of the pile head in sloping ground topography is larger than in horizontal ground.Differential displacement at various positions of the pile cap is observed in non-horizontal topography.Afterwards,a numerical algorithm is employed to further explore the essential response characteristics in group piles of different topography configurations,which has been verified by the test results.The lengths of the exposed and frictional segment,together with the thickness of the subsoil layer,are the dominant factors which cause non-axisymmetric vibration at the pile cap.展开更多
基金The National Key Research and Development Program(No.2017YFC0703408)the National Natural Science Foundation of China(No.51478109,51678145,51878160)
文摘Based on the characteristics of pile-soil interaction and the Mohr-Coulomb strength theory,a new method of determining the side friction at a pile-soil interaction is proposed.Combined with the actual engineering cases,the effectiveness of the analogue test method is verified by comparing it with the traditional anchor pile method and self-balanced method.Taking the self-balanced test of the bridge pile foundation in the Songhua River as an example,the conversion factor of sandy soil and weathered mudstone are confirmed by the analogue test method.The results show that the conversion factor of sandy soil and weathered mudstone in the Songhua River area should consider the geological conditions and the construction technology,etc.The standard values are relatively conservative.It is suggested that the engineering application should be properly revised.The recommended range of the conversion factor of sandy soil in this area is 0.65 to 0.85,and that of weathered mudstone is 1.0.
基金the Thailand Research Fund (TRF) for their financial support to this study
文摘Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.
文摘In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d cone p e n e tra tio nte s t (CPT) resu lts w ere used as in p u t variables for pred ictio n o f pile bearin g capacity. The d ata u se d w erecollected from th e existing litera tu re an d consisted o f 50 case records. The application o f LSSVM w ascarried o u t by dividing th e d ata into th re e se ts: a train in g se t for learning th e pro b lem an d obtain in g arelationship b e tw e e n in p u t variables an d pile bearin g capacity, and testin g an d validation sets forevaluation o f th e predictive an d g en eralization ability o f th e o b tain ed relationship. The predictions o f pilebearing capacity by LSSVM w ere evaluated by com paring w ith ex p erim en tal d ata an d w ith th o se bytrad itio n al CPT-based m eth o d s and th e gene ex pression pro g ram m in g (GEP) m odel. It w as found th a t th eLSSVM perform s w ell w ith coefficient o f d eterm in atio n , m ean, an d sta n d ard dev iatio n equivalent to 0.99,1.03, an d 0.08, respectively, for th e testin g set, an d 1, 1.04, an d 0.11, respectively, for th e v alidation set. Thelow values o f th e calculated m ean squared e rro r an d m ean ab so lu te e rro r indicated th a t th e LSSVM w asaccurate in p redicting th e pile bearing capacity. The results o f com parison also show ed th a t th e p roposedalg o rith m p red icted th e pile bearin g capacity m ore accurately th a n th e trad itio n al m eth o d s including th eGEP m odel.
基金the financial support by the National Key R&D Program of China(No.2018YFC1504901)Gansu Province Youth Science and Technology Fund program,China(Grant No.21JR7RA739)+1 种基金Natural Science Foundation of Gansu Province,China(Grant No.21JR7RA738)Natural Science Foundation of Gansu Province,China(No.145RJZA068)。
文摘Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles.
基金sponsored by the National Natural Science Foundation of China(51578467)
文摘Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks,the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed,and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake,with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface,while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure,local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside,and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs,the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated.
基金National Natural Science Foundation of China under Grant Nos.51622803 and 51878103China Postdoctoral Science Foundation under Grant No.2021M692689。
文摘Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.
文摘Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types.
基金sponsored by the Railway's Research and Development Project of the Ministry of Railways of the People's Republic of the China:Study on Special Subgrade Construction Technology in High Intensity Earthquake Area of the Yuxi-Mengzi Railway
文摘Cement-mixed piles,as countermeasure against liquefaction of silt and sand ground,can improve the shear strength and bearing capacity of foundation soil,meaning cement-mixed piles are capable of resisting displacement when an earthquake happens. However,investigations of cement-mixed piles by experimental methods such as the shaking table test is few and far between. It is especially true for the seismic performance of cement-mixed piles in liquefiable railway foundations in high seismic intensity regions. To this end,a cross-section of the Yuxi-Mengzi railway was selected as the prototype and studied by the shaking table test in this study. The results showed that composite foundation of cementmixed piles was not liquefied when the seismic acceleration was lower than 0. 30g. In the process of acceleration increasing from 0. 30g at 2Hz to 0. 60g at 3Hz,the upper middle silt outside slope toe was partly liquefied. The foundation soil under the shoulders and center of subgrade was far from the initial liquefaction criterion during the test. Cementmixed piles can effectively reduce the embankment settlement and differential settlement. It can be concluded that, the design of cement-mixed piles can ensure the seismic performance of the subgrade,and satisfy the seismic design requirements of the YuxiMengzi railway in areas of VIII degrees seismic fortification intensity.
文摘The methodology of predicting pile shaft skin ultimate friction has been studied in a systematic way. In the light of that, the analysis of the pile shaft resistance for bored and cast in situ piles in cohesive soils was carried out thoroughly in the basis of field performance data of 10 fully instrumented large diameter bored piles (LDBPs) used as the bridge foundation. The undrained strength index μ in term of cohesive soils was brought forward in allusion to the cohesive soils in the consistence plastic state, and can effectively combine the friction angle and the cohesion of cohesive soils in undrained condition. And that the classical ' α method' was modified much in effect to predict the pile shaft skin friction of LDBPs in cohesive soils. Furthermore, the approach of standard penetration test (SPT) N value used to estimate the pile shaft skin ultimate friction was analyzed, and the calculating formulae were established for LDBPs in clay and silt clay respectively.
文摘Two full-scale experiments using controlled blasting were conducted in the Port of Tokachi on Hokkaido Island, Japan,to assess the behavior of piles and pipelines subjected to lateral spreading.Test specimens were extensively instrumented with strain gauges to measure the distribution of moment during lateral spreading.This allowed us to compute the loading condition,as well as to conduct damage and performance assessments on the piles and pipelines.This paper presents the test results and discussions on the response of single piles and pipelines observed from the full-scale experiments.Based on the test results,it can be concluded that using controlled blasting successfully liquefied the soil,and subsequently induced lateral spreading.The movements of the single pile,as well as the transverse pipelines,were approximately the same as the free field soil movement.Observed moment distribution of the single pile indicated that global translation of the liquefied soil layer provided insignificant force to the pile.In addition,the degree of fixity at the pile tip significantly affected the moment along the pile as well as the pile head displacement.The pile with a higher degree of fixity at the pile tip had smaller pile head displacement but larger maximum moment.
基金Major Research Plan of National Natural Science Foundation of China Under Grant No.90815009National Natural Science Foundation of China Under Grant No.50378031 and 50178027Western Transport Construction Technology Projects Under Grant No.2009318000100
文摘This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.
基金financially supported by the National Key R&D Program of China(No.2018YFC1508601)the Fundamental Research Funds for the Central University(20822041B4038)
文摘Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.
文摘The model test result of earth force in the side of anti-slide pile of anchor bars was introduced.There are three groups of the tests.The loads were on the back side of the slope in two groups.The other one was loaded just behind the pile by the jack.In order to get the force of the soil,some earth-pressure boxes were used to get the earth pressure on the side of the piles.The part of the max pressure and the earth pressure was mainly focused under the slip line
基金supported by the National Natural Science Foundation of China (Grant Nos. U1404527 and 51508166)Opening Laboratory for Deep Mine Construction of Henan Polytechnic University (2014KF-07)
文摘The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure mechanism, as well as overreliance on pile load tests, have led to conservative designs and limited application. This study performs full-scale field load tests on instrumented squeezed branch piles and shows that the shaft force curves have obvious drop steps at the branch position, indicating that the branches can effectively share the pile top load. The effects of branch position, spacing, number and diameter on the pile bearing capacity are analyzed numerically. The numerical results indicate that the squeezed branch piles have two types of failure mechanisms, i.e. individual branch failure mechanism and cylindrical failure mechanism. Further research should focus on the development of the calculation method to determine the bearing capacities of squeezed branch piles considering these two failure mechanisms.
基金supported by the National Science Foundation of China (51622803)Technology Research and Development Project of CHINA RAILWAY (2017G008-H)China Scholarship Council (File No: 201806050121) for financial support to visit Purdue University, the United States
文摘This paper describes model tests of single piles subjected to vertical cyclic compressive loading for three kinds of topography: sloping ground, level ground, and inclined bedrock. Comprehensive dynamic responses involving cyclic effects and vibration behaviours are studied under various load combinations of dynamic amplitude, mean load,frequency and number of cycles. Test results show that permanent settlement can generally be predicted with a quadratic function or power function of cycles.Sloping ground topography produces more pronounced settlement than level ground under the same load condition. For vibration behaviour,displacement amplitude is weakly affected by the number of cycles, while load amplitude significantly influences dynamic responses. Test results also reveal that increasing load amplitude intensifies nonlinearity and topography effects. The strain distribution in a pile and soil stress at the pile tip are displayed to investigate the vibration mechanism accounting for sloping ground effects. Furthermore, the dynamic characteristics among three kinds of topography in the elastic stage are studied using a three-dimensional finite method. Numerical results are validated by comparing with experimental results for base inclination topography. An inclined soil profile boundary causes non-axisymmetric resultant deformation, though a small difference in vertical displacement is observed.
基金National Natural Science Foundation of China under Grant Nos.51622803,51378177 and 51420105013the 111 Project under Grant No.B13024
文摘Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder.
文摘An experimental program is conducted on model piled rafts in sand soil.The experimental program is aimed to investigate the behavior of raft on settlement reducing piles.The testing program includes tests on models of single pile,unpiled rafts and rafts on 1,4,9,or 16 piles.The model piles beneath the rafts are closed ended displacement piles installed by driving.Three lengths of piles are used in the experiments to represent slenderness ratio,L/D,of 20,30 and 50,respectively.The dimensions of the model rafts are 30 cm×30 cm with different thickness of 0.5 cm,1.0 cm or 1.5 cm.The raft-soil stiffness ratios of the model rafts ranging from 0.39 to 10.56 cover flexible to very stiff rafts.The improvement in the ultimate bearing capacity is represented by the load improvement ratio,LIR,and the reductions in average settlement and differential settlement are represented by the settlement ratio,SR,and the differential settlement ratio,DSR,respectively.The effects of the number of settlement reducing piles,raft relative stiffness,and the slenderness ratio of piles on the load improvement ratio,settlement ratio and differential settlement ratio are presented and discussed.The results of the tests show the effectiveness of using piles as settlement reduction measure with the rafts.As the number of settlement reducing piles increases,the load improvement ratio increases and the differential settlement ratio decreases.
基金The study is supported by the National Key R&D Program of China(Grant No.2018YFC1508503)the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering,Tsinghua University(Grant No.sklhse-2020-D-03),which are greatly acknowledged.
文摘Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown.
文摘Despite significant advancements in in situ test techniques,construction practices,understanding of rock joint and rock mass behaviours,and numerical analysis methods,the design of bored concrete cast-insitu piles in rock is still largely based on the assessment of bearing capacity.However,for many of the rock conditions encountered,the bearing capacity of piles is a nebulous concept and a figment of the designer’s imagination.Even if it can be reasonably quantified,it has little,if any,significance to the performance of a pile in rock.The load carrying capacity of even low strength rock(in most situations)is far in excess of the strength of the structure(for example,a building column)transmitting the load.Unsatisfactory performance of a pile in rock is usually a displacement issue and is a function of rock mass stiffness rather than rock mass strength.In addition,poor pile performance is much more likely to result from poor construction practices than excessive displacement of the rock mass.Exceptions occur for footings that are undermined,or where unfavourable structure in the rock allows movement towards a free surface to occur.Standards,codes of practices,reference books and other sources of design information should focus foundation design in rock on displacement rather than strength performance.Ground investigations should measure rock mass stiffness and defect properties,as well as intact rock strength.This paper summarises the fundamental concepts relating to performance of piles in rock and provides a basis for displacement focused design of piles in rock.It also presents comments relating to how piles are modelled in widely used commercial finite element software for soil-structure interaction analysis,within the context of the back-analysis of a pile load test,and proposes recommendations for pile analysis and design.
基金National Science Foundation of China under Grant Nos.51622803 and 51778092Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,China under Grant No.cstc2020jcyjcxttX0003China Scholarship Council(File No:201806050121)for financial support to visit Purdue University。
文摘Topography effects on the vertical vibration responses of pile group are revealed though numerical analysis and model tests.First,a series of model tests with different topography of ground and bedrock are conducted.The results indicate that displacement amplitude of the pile head in sloping ground topography is larger than in horizontal ground.Differential displacement at various positions of the pile cap is observed in non-horizontal topography.Afterwards,a numerical algorithm is employed to further explore the essential response characteristics in group piles of different topography configurations,which has been verified by the test results.The lengths of the exposed and frictional segment,together with the thickness of the subsoil layer,are the dominant factors which cause non-axisymmetric vibration at the pile cap.