A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+)...A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+),Cu^(2+),and Hg^(2+).On the one hand,Py N-SBA-15 was used as a fluorescence sensor and displayed high sensitivity toward Al^(3+),Cu^(2+),and Hg^(2+)cations (limit of detection:8.0×10^(-7),1.1×10^(-7),and 2.9×10^(-6)mol·L^(–1),respectively) among various analytes with“turn-off”response.On the other hand,the adsorption studies for these toxic analytes (Cu^(2+),Hg^(2+),and Al^(3+)) showed that the ion removal capacity could reach up to 45,581,and 85 mg·g^(-1),respectively.Moreover,the Langmuir isotherm models were better fitted with the adsorption data,indicating that the adsorption was mono-layer adsorption.Kinetic analysis revealed that the adsorption process was well described by the pseudo-second-order kinetic model for Cu^(2+)and Hg^(2+)and pseudo-first-order kinetic model for Al^(3+).The prepared silica material could be reused in four recycles without significantly decreasing its adsorption capacity.Therefore,the Py N-SBA-15 material can serve as a promising candidate for the simultaneous rapid detection and efficient adsorption of metal ions.展开更多
Biomass-derived carbon dots(C-dots)are considered a very important carbon material in metal ion detection of their small environmental impact,simple preparation process,and relatively low cost.A green approach for syn...Biomass-derived carbon dots(C-dots)are considered a very important carbon material in metal ion detection of their small environmental impact,simple preparation process,and relatively low cost.A green approach for synthesizing biomass-derived C-dots from Chenpi using a hydrothermal method without further processing is proposed in the present study.The as-synthesized C-dots show excellent fluorescence properties,superior resistance to UV irradiation photobleaching,and high photostability in salt-containing solutions.The C-dots were used in the form of label-free fluorescent probes for sensitively detecting Hg^(2+)selectively.The outcome relationship behaved linearly and was established based on a given range between 10–300 nM concentration,with a detection limit of 7.0 nM.This green strategy obtains a high C-dot quantum yield of 10.8%and satisfactory results in detecting Hg^(2+)in actual water samples.展开更多
Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe cons...Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe consists of hydroxylated graphene quantum dots(H-GQDs),prepared from GQDs by electrochemical method followed by surface hydroxylation.It is a non-reactive indicator with high sensitivity and detection limits of 0.01μM for Cu2+,0.005μM for Al3+,0.04μM for Fe3+,and 0.02μM for Cr3+.In addition,the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.展开更多
For preparing fluorinated quinolone antibiotic medicine locally used in stomatology, simultaneous determination of norfloxacin, ciprofloxacin, and enoxacin was carried out by multiphase ion chromatography with fluores...For preparing fluorinated quinolone antibiotic medicine locally used in stomatology, simultaneous determination of norfloxacin, ciprofloxacin, and enoxacin was carried out by multiphase ion chromatography with fluorescence detection. Quinolone antibiotics were separated by Dionex OmniPac PAX-500 column with an eluent of 15 mmol/L H2SO4 and 35% methanol (v/v) at a flow-rate of 1.0 ml/min and detected with fluorescence with excitation and emission wave lengths of 347 ran and 420 ran respectively. The detection limits (S/N=3) of norfloxacin, ciprofloxacin and enoxacin were 50, 105 and 80 ng/ml respectively. The relative standard deviations of retention time, peak area and peak height were less than 1.1% and good linear relationship resulted. The developed method was applied to pharmaceutical formulations and biological fluids.展开更多
Fast and sensitive detection of dilute rare earth species still represents a challenge for an on-site survey of new resources and evaluation of the economic value. In this work, a robust and low-cost protocol has been...Fast and sensitive detection of dilute rare earth species still represents a challenge for an on-site survey of new resources and evaluation of the economic value. In this work, a robust and low-cost protocol has been developed to analyze the concentration of rare earth ions using a smartphone camera. The success of this protocol relies on mesoporous silica nanoparticles(MSNs) with large-area negatively charged surfaces, on which the rare earth cations(e.g., Eu^(3+)) are efficiently adsorbed through electrostatic attraction to enable a ‘‘concentrating effect''. The initial adsorption rate is as fast as 4025 mg(g min)^(-1), and the adsorption capacity of Eu^(3+)ions in the MSNs is as high as 4730 mg g^(-1)(equivalent to ~41.2 M) at 70 °C. The concentrated Eu^(3+)ions in the MSNs can form a complex with a light sensitizer of 1,10-phenanthroline to significantly enhance the characteristic red emission of Eu^(3+)ions due to an ‘‘antenna effect'' that relies on the efficient energy transfer from the light sensitizer to the Eu^(3+)ions.The positive synergy of ‘‘concentrating effect'' and ‘‘antenna effect'' in the MSNs enables the analysis of rare earth ions in a wide dynamic range and with a detection limit down to ~80 nM even using a smartphone camera. Our results highlight the promise of the protocol in fieldwork for exploring valuable rare earth resources.展开更多
In the present work, a novel analytical method was proposed for the determination of toluene diisocyanate (TDI) in syntheticrubber track by ion chromatography (IC) coupled with an ultraviolet detector setting at 2...In the present work, a novel analytical method was proposed for the determination of toluene diisocyanate (TDI) in syntheticrubber track by ion chromatography (IC) coupled with an ultraviolet detector setting at 212 nm. TDI can be hydrolyzed to toluene diamine (TDA) which can be separated by cation-exchange IC easily. The optimum IC separation was performed on an IonPac CS12A column (150 mm ×4.0 mm) using 20 mmol L^-1 sodium sulfate, 10 mmol L^-1 sulfuric acid and 10% acetonitrile as eluent. It was found that a higher signal response of TDA could be obtained under alkaline condition. A suppressor was used to change the acidic eluent into alkaline one. 0.8 mol L^-1 potassium hydroxide was chosen as the optimum regeneration eluent. With the added suppressor and regenerant, signal response was magnified by about 16 times and lower limit of detection (LOD, 0.13 μg L^-1) was obtained. Within-day relative standard deviation (R.S.D.) was less than 3.6%. The recoveries of TDI spiked in synthetic-rubber track samoles were 96.4-110.6%.展开更多
The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three...The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three-dimensional (3D) periodic SiO2 nanogrids as surface-enhanced Raman scattering (SERS) probes. The SERS effects of the probes depend mainly on the positions and intensities of their localized surface plasmon resonance (LSPR) peaks, which is confirmed by the absorption spectra from finite-difference time-domain (FDTD) calculations. By optimizing the structure and material to maximize the intrinsic electric field enhancement based on the design method of 3D periodic SERS probes proposed, high performance of the Ag-Au/SiO2 nanogrid probes is achieved with the stability further enhanced by annealing. The optimized probes show the outstanding stability with only 4.0% SERS intensity change during 10-day storage, the excellent detection uniformity of 5.78% (RSD), the detection limit of 5.0 × 10-12 M (1 ppt), and superior selectivity for Hg ions. The present study renders it possible to realize the rapid and reliable detection of trace heavy metal ions by developing high- performance 3D periodic structure SERS probes by designing novel 3D structure and optimizing plasmonic material.展开更多
A simple, economical, and sensitive capillary electrophoresis (CE) method integrated with capacitively coupled contactless conductivity detection was developed for the determination of metal ions such as K<sup>+...A simple, economical, and sensitive capillary electrophoresis (CE) method integrated with capacitively coupled contactless conductivity detection was developed for the determination of metal ions such as K<sup>+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>, Sr<sup>2+</sup>, Ca<sup>2+</sup> in drinking water. 18-Crown-6 ether and Hexadecyltrimethylammonium Bromide (CTAB) were employed as complexing reagents. The effects of electrolyte additives, citric acid buffer solution, and other separation conditions of CE were comprehensively investigated and carefully optimized. The best results were obtained in a running buffer solution composed of citric acid (12 mM), 18-crown-6 ether (0.2 mM), and CTAB (0.015 mM) at pH 3.5. Under these conditions, a complete separation of five metal ions was successfully achieved in less than 12 min. The limits of detection for the optimal procedure were determined to be in the range of 0.02 - 0.2 mg·L<sup>-1</sup>. The repeatability with respect to migration times and peak areas, expressed as relative standard deviations, was better than 2.3% and 5.1%, respectively. Evaluation of the efficiency of the methodology indicated that it was reliable for the determination of metal ions in six different brands of drinking water samples.展开更多
Cellulose nanocrystals (CNCs), a unique and promising natural material extracted from native cellulose, have attracted considerable attention owing to their physical properties and special surface chemistry. This...Cellulose nanocrystals (CNCs), a unique and promising natural material extracted from native cellulose, have attracted considerable attention owing to their physical properties and special surface chemistry. This review focuses on chemical conjugation strategies that can be used for preparation of ?uorescent-molecule labeled CNCs and the development of biomaterials. Furthermore, their application in the detection of metal ions and future development prospects are discussed. We hope to provide a clear view of the strategies for surface fluorescent modifcation of CNCs and their application in detection of metal ions.展开更多
A mixture containing eleven lanthanide ions was separated and detected on an anion exchange co lumn by ion chromatography with indirect photometry detection (IPC).An aqueous solution of 1.5×10 -2 mol/L ni...A mixture containing eleven lanthanide ions was separated and detected on an anion exchange co lumn by ion chromatography with indirect photometry detection (IPC).An aqueous solution of 1.5×10 -2 mol/L nitrilotri(methylenephosphonic) acid and 2.5×10 -3 mol/L tiron was used as the eluent in which the former served as complexing agent and eluent,the latter played as color reagent and eluent.The effects of acidity,concentration and composition of eluent on the retention behavior of the analytes and detection sensitivity are discussed.展开更多
In this research, a glassy carbon electrode modified with the functionalized multi-wall carbon nanotubes(MWNT-COOHs) film was used as an amperometric sensor for the determination of S_2O^(2-)_3, SO^(2-)_3, I^- and SCN...In this research, a glassy carbon electrode modified with the functionalized multi-wall carbon nanotubes(MWNT-COOHs) film was used as an amperometric sensor for the determination of S_2O^(2-)_3, SO^(2-)_3, I^- and SCN^-. The electrochemical behavior of those oxidizable inorganic anions at this modified electrode was studied by means of cyclic voltammetry(CV). The experimental results indicate that the modified electrode exhibits a high electrocatalytic activity towards the oxidation of those anions with a relatively high sensitivity, a good stability and a long-life. Separated by ion chromatography(IC) with 1.25 mmol/L H_2SO_4 as an eluent, those oxidizable anions can be determined by the MWNT-COOHs modified electrode successfully. Under the optimal chromatographic conditions, the detection limits are 1.5×10^(-7) mol/L for S_2O^(2-)_3, 2.5×10^(-7) mol/L for SO^(2-)_3, 1.2×10^(-7) mol/L for I^- and 2.0×10^(-7) mol/L for SCN^-, respectively. The method was applied successfully to the determination of those anions in environmental water展开更多
Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in bio...Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.展开更多
A new type of self-assembled molecule ON-OFF fluorescence probe for toxic transition metal ions, made up of thiacalix[4]arene, micelle and fluorescence group, has been studied by DFT/TDDFT method combined with experim...A new type of self-assembled molecule ON-OFF fluorescence probe for toxic transition metal ions, made up of thiacalix[4]arene, micelle and fluorescence group, has been studied by DFT/TDDFT method combined with experiment spectra. Since the mechanism of the optical quenching signal response of such self-assembled micelle probe has always been a controversial issue of uncertainty, the spatial construction and geometric structures of the functional units of probe in the Cu2+ ion detecting process were calculated and the mechanism was investigated by the molecular transition orbital pairs method to explore the origination of ON-OFF fluorescence sign response. The results presented that the signal response mechanism of the micelle probe is ascribed to F?rster resonance energy transfer(FRET) which provides new sights different from most of the conclusions by the related research work reported.展开更多
The effect of ion implantation, including Ar+ ion with influences (1 × 1013 - 1015 ions/cm2), on the electrical and optical properties of ultrahigh molecular weight polyethylene (UHMWPE) were investigated with pa...The effect of ion implantation, including Ar+ ion with influences (1 × 1013 - 1015 ions/cm2), on the electrical and optical properties of ultrahigh molecular weight polyethylene (UHMWPE) were investigated with particular emphasis placed on the sensor performance to be used in the field of radiation detection. The obtained results focusing on the effect of the different influences showed a significant change in the electrical conductivity, capacitance and loss tangent. The absorption spectra for UHMWPE samples were recorded and the values of the allowed direct and indirect optical energy gap (Eopt)d, (Eopt)in of UHMWPE and energies of the localized states for the virgin and implanted samples were calculated. We found that the optical energy gap values decreased as the radiation dose increased. The results can be explained on the basis of the ion beam radiation-induced damage in the linear chains of UHMWPE, with cross-linking generated after implantation. The observed changes in both the optical and the electrical properties suggest that the UHMWPE film may be considered as an effective material to achieve ion-radiation detection at room temperature.展开更多
A spectrophotometric approach for the detection of non-ionic surfactant (Triton X-100) has been proposed in this paper. This method does not involve extraction of the ion-associate with harmful solvents, but employs a...A spectrophotometric approach for the detection of non-ionic surfactant (Triton X-100) has been proposed in this paper. This method does not involve extraction of the ion-associate with harmful solvents, but employs adhesion of the ion-association of potassium/non-ionic surfactants complex and tetraphenylporphyrin tetrasulfonic acid obtained by vigorous shaking. The adhered ion-associate was dissolved with water and its absorbance was measured. The sensitivity for Triton X-100 was determined to be 0.146 (expressed as absorbance of 1 mg/L solution). The adhesion tendency of ion-associate was found to be dependent on the water contact angle, which in turn was influenced by a high adhesion of the ion-associate and by low blank values. In this respect, a tetrafluo-roethylene vessel was found to be the most suitable for the detection of non-ionic surfactants. This spectrophotometrical method is simply and rapidly performed by a procedure based on mechanical shaking and can be employed to detect non-ionic surfactants containing more than 7 polyethylene oxide units.展开更多
Developing fluorescence porous probe for detecting and eliminating Cu^(2+) contamination in water or biosystem is an essential research project that has attracted considerable attention.However,improving the fluoresce...Developing fluorescence porous probe for detecting and eliminating Cu^(2+) contamination in water or biosystem is an essential research project that has attracted considerable attention.However,improving the fluorescence detecting efficiency while enhancing the adsorption capacity of the porous probe is of great challenge.Herein,a bifunctional two-dimensional imine-based porous covalent organic framework(TTP-COF)probe was designed and synthesized from 1,3,5-tris(4-aminophenyl)benzene(TAPB)and 2,4,6-Triformylphloroglucinol(TP)ligand.TTP-COF displayed rapid detection of Cu^(2+)(limit of detection(LOD)=10 nmol·L^(−1) while achieving a high adsorption capacity of 214 mg·g^(−1)(pH=6)at room temperature with high reusability(>5 cycles).The key roles and contributions of highπ-conjugate and delocalized electrons in TABP and functional–OH groups in TP were proved.More importantly,the fluorescence quenching mechanism of TTP-COF was studied by density functional theory theoretical calculations,revealing the crucial role of intramolecular hydrogen bonds among C=N and–OH groups and the blocking of the excited state intramolecular proton transfer process in detecting process of Cu^(2+).展开更多
X-ray detection plays a crucial role across various aspects of our daily lives,encompassing medical diagnoses,security screenings,and non-destructive examinations in industrial settings.Given the wide array of applica...X-ray detection plays a crucial role across various aspects of our daily lives,encompassing medical diagnoses,security screenings,and non-destructive examinations in industrial settings.Given the wide array of application contexts,a wealth of opportunities is entailed with the practical utilization of both organic and inorganic X-ray detection materials.A novel and promising contender in this realm is the emergence of metal-free organic halide perovskites(O-PVSKs),offering great opportunities and tremendous potential in X-ray detection.This potential can be attributed to the distinct crystalline configuration of O-PVSKs,where organic constituents are structured into an ABX3perovskite arrangement.Consequently,O-PVSKs exhibit captivating characteristics reminiscent of organic materials,such as lightweight nature and modifiability,all while retaining the distinctive traits associated with halide perovskites ranging from diverse structures to tunable optoelectronic properties.This review article delves into the intrinsic attributes of O-PVSKs and critically examines the viability of O-PVSKs in X-ray detection,through which key features that distinguish O-PVSKs from traditional organic semiconductors and perovskites are outlined.This is followed by a perspective given on their future avenues for exploration.展开更多
To achieve a lower detection limit has always been a goal of analytical chemists.Herein,we demonstrate the first picomolar level detection capability for Fe3+ion via luminescence detection technology.The results of st...To achieve a lower detection limit has always been a goal of analytical chemists.Herein,we demonstrate the first picomolar level detection capability for Fe3+ion via luminescence detection technology.The results of structural analysis and theoretical calculation show that Fe3+ions are adsorbed on the central node of Eu-DBM(DBM=dibenzoylmethane)sensor in the form of single ion at ultralow concentration.Subsequently,the pathways of photo-induced charge and energy transfer of the obtained Eu-DBM@Fe^(3+)material have been changed,from the initial DBM-to-Eu^(3+)before Fe^(3+)adsorption to the ultimate DBM-to-Fe^(3+)after adsorption process,which quenches the luminescence of Eu3+ion.This work not only obtains the highly sensitive luminescence detection ability,but also innovatively proposes the single-ion adsorption mechanism,both of which have important scientific and application values for the development of more efficient detection agents in the future.展开更多
In the early-stage diagnosis of lung cancer,the low-concentration(<5 ppm)volatile organic compounds(VOCs)are extensively identified to be the biomarkers for breath analysis.Herein,the urchin-like sodium(Na)-doped z...In the early-stage diagnosis of lung cancer,the low-concentration(<5 ppm)volatile organic compounds(VOCs)are extensively identified to be the biomarkers for breath analysis.Herein,the urchin-like sodium(Na)-doped zinc oxide(ZnO)nanoneedles were synthesized through a hydrothermal strategy with the addition of different contents of citric acid.The Na-doped ZnO gas sensor with a 3:1 molar ratio of Na^(+)and citric acid showed outstanding sensing properties with an optimal selectivity to various VOCs(formaldehyde(HCOH),isopropanol,acetone,and ammonia)based on working temperature regulation.Specifically,significantly enhanced sensitivity(21.3@5 ppm)compared with pristine ZnO(~7-fold),low limit of detection(LOD)(298 ppb),robust humidity resistance,and long-term stability of formaldehyde sensing performances were obtained,which can be attributed to the formation of a higher concentration of oxygen vacancies(20.98%)and the active electron transitions.Furthermore,the improved sensing mechanism was demonstrated by the exquisite band structure and introduction of the additional acceptor level,which resulted in the narrowed bandgap of ZnO.展开更多
In this work,an automated microfluidic chip that uses negative pressure to sample and analyze solutions with high temporal resolution was developed.The chip has a T-shaped channel for mixing the sample with a fluoresc...In this work,an automated microfluidic chip that uses negative pressure to sample and analyze solutions with high temporal resolution was developed.The chip has a T-shaped channel for mixing the sample with a fluorescent indicator,a flow-focusing channel for generating droplets in oil,and a long storage channel for incubating and detecting the droplets.By monitoring the fluorescence intensity of the droplets,the device could detect changes in solution accurately over time.The chip can generate droplets at frequencies of up to 42 Hz with a mixing ratio of 1:1 and a temporal resolution of 3–6 s.It had excellent linearity in detecting fluorescein solution in the concentration range 1–5μM.This droplet microfluidic chip provides several advantages over traditional methods,including high temporal resolution,stable droplet generation,and faster flow rates.This approach could be applied to monitoring calcium ions with a dynamic range from 102 to 107 nM and a detection limit of 10 nM.展开更多
基金supported by the National Natural Science Foundation of China (21966006)。
文摘A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+),Cu^(2+),and Hg^(2+).On the one hand,Py N-SBA-15 was used as a fluorescence sensor and displayed high sensitivity toward Al^(3+),Cu^(2+),and Hg^(2+)cations (limit of detection:8.0×10^(-7),1.1×10^(-7),and 2.9×10^(-6)mol·L^(–1),respectively) among various analytes with“turn-off”response.On the other hand,the adsorption studies for these toxic analytes (Cu^(2+),Hg^(2+),and Al^(3+)) showed that the ion removal capacity could reach up to 45,581,and 85 mg·g^(-1),respectively.Moreover,the Langmuir isotherm models were better fitted with the adsorption data,indicating that the adsorption was mono-layer adsorption.Kinetic analysis revealed that the adsorption process was well described by the pseudo-second-order kinetic model for Cu^(2+)and Hg^(2+)and pseudo-first-order kinetic model for Al^(3+).The prepared silica material could be reused in four recycles without significantly decreasing its adsorption capacity.Therefore,the Py N-SBA-15 material can serve as a promising candidate for the simultaneous rapid detection and efficient adsorption of metal ions.
基金financially supported by the Development Program of Hunan Province (No.2020SK2128).
文摘Biomass-derived carbon dots(C-dots)are considered a very important carbon material in metal ion detection of their small environmental impact,simple preparation process,and relatively low cost.A green approach for synthesizing biomass-derived C-dots from Chenpi using a hydrothermal method without further processing is proposed in the present study.The as-synthesized C-dots show excellent fluorescence properties,superior resistance to UV irradiation photobleaching,and high photostability in salt-containing solutions.The C-dots were used in the form of label-free fluorescent probes for sensitively detecting Hg^(2+)selectively.The outcome relationship behaved linearly and was established based on a given range between 10–300 nM concentration,with a detection limit of 7.0 nM.This green strategy obtains a high C-dot quantum yield of 10.8%and satisfactory results in detecting Hg^(2+)in actual water samples.
基金financially supported by the National Natural Science Foundation of China (No. 21674011)Beijing Municipal Natural Science Foundation (No. 2172040)
文摘Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe consists of hydroxylated graphene quantum dots(H-GQDs),prepared from GQDs by electrochemical method followed by surface hydroxylation.It is a non-reactive indicator with high sensitivity and detection limits of 0.01μM for Cu2+,0.005μM for Al3+,0.04μM for Fe3+,and 0.02μM for Cr3+.In addition,the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.
基金Project supported by the National Natural Science Foundation of China (Nos.20375035 and 20527005)the Natural Science Foundation of Zhejiang Province (No.Z404105), China
文摘For preparing fluorinated quinolone antibiotic medicine locally used in stomatology, simultaneous determination of norfloxacin, ciprofloxacin, and enoxacin was carried out by multiphase ion chromatography with fluorescence detection. Quinolone antibiotics were separated by Dionex OmniPac PAX-500 column with an eluent of 15 mmol/L H2SO4 and 35% methanol (v/v) at a flow-rate of 1.0 ml/min and detected with fluorescence with excitation and emission wave lengths of 347 ran and 420 ran respectively. The detection limits (S/N=3) of norfloxacin, ciprofloxacin and enoxacin were 50, 105 and 80 ng/ml respectively. The relative standard deviations of retention time, peak area and peak height were less than 1.1% and good linear relationship resulted. The developed method was applied to pharmaceutical formulations and biological fluids.
基金supported by the start-up and OVPR seed Grant from Temple University
文摘Fast and sensitive detection of dilute rare earth species still represents a challenge for an on-site survey of new resources and evaluation of the economic value. In this work, a robust and low-cost protocol has been developed to analyze the concentration of rare earth ions using a smartphone camera. The success of this protocol relies on mesoporous silica nanoparticles(MSNs) with large-area negatively charged surfaces, on which the rare earth cations(e.g., Eu^(3+)) are efficiently adsorbed through electrostatic attraction to enable a ‘‘concentrating effect''. The initial adsorption rate is as fast as 4025 mg(g min)^(-1), and the adsorption capacity of Eu^(3+)ions in the MSNs is as high as 4730 mg g^(-1)(equivalent to ~41.2 M) at 70 °C. The concentrated Eu^(3+)ions in the MSNs can form a complex with a light sensitizer of 1,10-phenanthroline to significantly enhance the characteristic red emission of Eu^(3+)ions due to an ‘‘antenna effect'' that relies on the efficient energy transfer from the light sensitizer to the Eu^(3+)ions.The positive synergy of ‘‘concentrating effect'' and ‘‘antenna effect'' in the MSNs enables the analysis of rare earth ions in a wide dynamic range and with a detection limit down to ~80 nM even using a smartphone camera. Our results highlight the promise of the protocol in fieldwork for exploring valuable rare earth resources.
基金supported by the National Natural Science Foundation of China(No.20775070)Zhejiang Provincial Natural Science Foundation of China(No.Y507252).
文摘In the present work, a novel analytical method was proposed for the determination of toluene diisocyanate (TDI) in syntheticrubber track by ion chromatography (IC) coupled with an ultraviolet detector setting at 212 nm. TDI can be hydrolyzed to toluene diamine (TDA) which can be separated by cation-exchange IC easily. The optimum IC separation was performed on an IonPac CS12A column (150 mm ×4.0 mm) using 20 mmol L^-1 sodium sulfate, 10 mmol L^-1 sulfuric acid and 10% acetonitrile as eluent. It was found that a higher signal response of TDA could be obtained under alkaline condition. A suppressor was used to change the acidic eluent into alkaline one. 0.8 mol L^-1 potassium hydroxide was chosen as the optimum regeneration eluent. With the added suppressor and regenerant, signal response was magnified by about 16 times and lower limit of detection (LOD, 0.13 μg L^-1) was obtained. Within-day relative standard deviation (R.S.D.) was less than 3.6%. The recoveries of TDI spiked in synthetic-rubber track samoles were 96.4-110.6%.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0207104)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09040101)+2 种基金the National Natural Science Foundation of China(Grant No.Y6061111JJ)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2015030)the Key Technology Talent Program of Chinese Academy of Sciences(Grant Nos.Y8482911ZX and Y7602921ZX)
文摘The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three-dimensional (3D) periodic SiO2 nanogrids as surface-enhanced Raman scattering (SERS) probes. The SERS effects of the probes depend mainly on the positions and intensities of their localized surface plasmon resonance (LSPR) peaks, which is confirmed by the absorption spectra from finite-difference time-domain (FDTD) calculations. By optimizing the structure and material to maximize the intrinsic electric field enhancement based on the design method of 3D periodic SERS probes proposed, high performance of the Ag-Au/SiO2 nanogrid probes is achieved with the stability further enhanced by annealing. The optimized probes show the outstanding stability with only 4.0% SERS intensity change during 10-day storage, the excellent detection uniformity of 5.78% (RSD), the detection limit of 5.0 × 10-12 M (1 ppt), and superior selectivity for Hg ions. The present study renders it possible to realize the rapid and reliable detection of trace heavy metal ions by developing high- performance 3D periodic structure SERS probes by designing novel 3D structure and optimizing plasmonic material.
文摘A simple, economical, and sensitive capillary electrophoresis (CE) method integrated with capacitively coupled contactless conductivity detection was developed for the determination of metal ions such as K<sup>+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>, Sr<sup>2+</sup>, Ca<sup>2+</sup> in drinking water. 18-Crown-6 ether and Hexadecyltrimethylammonium Bromide (CTAB) were employed as complexing reagents. The effects of electrolyte additives, citric acid buffer solution, and other separation conditions of CE were comprehensively investigated and carefully optimized. The best results were obtained in a running buffer solution composed of citric acid (12 mM), 18-crown-6 ether (0.2 mM), and CTAB (0.015 mM) at pH 3.5. Under these conditions, a complete separation of five metal ions was successfully achieved in less than 12 min. The limits of detection for the optimal procedure were determined to be in the range of 0.02 - 0.2 mg·L<sup>-1</sup>. The repeatability with respect to migration times and peak areas, expressed as relative standard deviations, was better than 2.3% and 5.1%, respectively. Evaluation of the efficiency of the methodology indicated that it was reliable for the determination of metal ions in six different brands of drinking water samples.
基金the National Natural Science Foundation of China (51373131)Fundamental Research Funds for the Central Universities (XDJK2016A017 and XDJK2016C033 )+1 种基金Project of Basic Science and Advanced Technology Research, Chongqing Science and Technology Commission (cstc2016, jcyjA0796)the Talent Project of Southwest University (SWU115034)
文摘Cellulose nanocrystals (CNCs), a unique and promising natural material extracted from native cellulose, have attracted considerable attention owing to their physical properties and special surface chemistry. This review focuses on chemical conjugation strategies that can be used for preparation of ?uorescent-molecule labeled CNCs and the development of biomaterials. Furthermore, their application in the detection of metal ions and future development prospects are discussed. We hope to provide a clear view of the strategies for surface fluorescent modifcation of CNCs and their application in detection of metal ions.
文摘A mixture containing eleven lanthanide ions was separated and detected on an anion exchange co lumn by ion chromatography with indirect photometry detection (IPC).An aqueous solution of 1.5×10 -2 mol/L nitrilotri(methylenephosphonic) acid and 2.5×10 -3 mol/L tiron was used as the eluent in which the former served as complexing agent and eluent,the latter played as color reagent and eluent.The effects of acidity,concentration and composition of eluent on the retention behavior of the analytes and detection sensitivity are discussed.
基金supported by the National Natural Science Foundation of China(No.2 0 175 0 0 6 ) and Nano Projects from Shanghai Sci-ence and Technology Com mittee(No.0 2 14 nm0 78and0 35 9nm0 0 2 )
文摘In this research, a glassy carbon electrode modified with the functionalized multi-wall carbon nanotubes(MWNT-COOHs) film was used as an amperometric sensor for the determination of S_2O^(2-)_3, SO^(2-)_3, I^- and SCN^-. The electrochemical behavior of those oxidizable inorganic anions at this modified electrode was studied by means of cyclic voltammetry(CV). The experimental results indicate that the modified electrode exhibits a high electrocatalytic activity towards the oxidation of those anions with a relatively high sensitivity, a good stability and a long-life. Separated by ion chromatography(IC) with 1.25 mmol/L H_2SO_4 as an eluent, those oxidizable anions can be determined by the MWNT-COOHs modified electrode successfully. Under the optimal chromatographic conditions, the detection limits are 1.5×10^(-7) mol/L for S_2O^(2-)_3, 2.5×10^(-7) mol/L for SO^(2-)_3, 1.2×10^(-7) mol/L for I^- and 2.0×10^(-7) mol/L for SCN^-, respectively. The method was applied successfully to the determination of those anions in environmental water
基金The authors would like to acknowledge financial support from the National Key R&D Program of China(Nos.2021YFF1200700 and 2021YFA0911100)the National Natural Science Foundation of China(Nos.T2225010,32171399,and 32171456)+4 种基金the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(No.22dfx02)Pazhou Lab,Guangzhou(No.PZL2021KF0003)The authors also would like to thank the funding support from the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,and State Key Laboratory of Precision Measuring Technology and Instruments(No.pilab2211)QQOY would like to thank the China Postdoctoral Science Foundation(No.2022M713645)JL would like to thank the National Natural Science Foundation of China(No.62105380)and the China Postdoctoral Science Foundation(No.2021M693686).
文摘Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.
基金supported by the Natural Science Foundation of Liaoning Province(201602516)Shenyang Project of Young and Middle-aged Innovative Talents of Science and Technology(RC170244)
文摘A new type of self-assembled molecule ON-OFF fluorescence probe for toxic transition metal ions, made up of thiacalix[4]arene, micelle and fluorescence group, has been studied by DFT/TDDFT method combined with experiment spectra. Since the mechanism of the optical quenching signal response of such self-assembled micelle probe has always been a controversial issue of uncertainty, the spatial construction and geometric structures of the functional units of probe in the Cu2+ ion detecting process were calculated and the mechanism was investigated by the molecular transition orbital pairs method to explore the origination of ON-OFF fluorescence sign response. The results presented that the signal response mechanism of the micelle probe is ascribed to F?rster resonance energy transfer(FRET) which provides new sights different from most of the conclusions by the related research work reported.
文摘The effect of ion implantation, including Ar+ ion with influences (1 × 1013 - 1015 ions/cm2), on the electrical and optical properties of ultrahigh molecular weight polyethylene (UHMWPE) were investigated with particular emphasis placed on the sensor performance to be used in the field of radiation detection. The obtained results focusing on the effect of the different influences showed a significant change in the electrical conductivity, capacitance and loss tangent. The absorption spectra for UHMWPE samples were recorded and the values of the allowed direct and indirect optical energy gap (Eopt)d, (Eopt)in of UHMWPE and energies of the localized states for the virgin and implanted samples were calculated. We found that the optical energy gap values decreased as the radiation dose increased. The results can be explained on the basis of the ion beam radiation-induced damage in the linear chains of UHMWPE, with cross-linking generated after implantation. The observed changes in both the optical and the electrical properties suggest that the UHMWPE film may be considered as an effective material to achieve ion-radiation detection at room temperature.
文摘A spectrophotometric approach for the detection of non-ionic surfactant (Triton X-100) has been proposed in this paper. This method does not involve extraction of the ion-associate with harmful solvents, but employs adhesion of the ion-association of potassium/non-ionic surfactants complex and tetraphenylporphyrin tetrasulfonic acid obtained by vigorous shaking. The adhered ion-associate was dissolved with water and its absorbance was measured. The sensitivity for Triton X-100 was determined to be 0.146 (expressed as absorbance of 1 mg/L solution). The adhesion tendency of ion-associate was found to be dependent on the water contact angle, which in turn was influenced by a high adhesion of the ion-associate and by low blank values. In this respect, a tetrafluo-roethylene vessel was found to be the most suitable for the detection of non-ionic surfactants. This spectrophotometrical method is simply and rapidly performed by a procedure based on mechanical shaking and can be employed to detect non-ionic surfactants containing more than 7 polyethylene oxide units.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.22001156 and 22271178)the Innovation Capability Support Program of Shaanxi(No.2022KJXX-88)the Technology Innovation Leading Program of Shaanxi(No.2020QFY07-05).
文摘Developing fluorescence porous probe for detecting and eliminating Cu^(2+) contamination in water or biosystem is an essential research project that has attracted considerable attention.However,improving the fluorescence detecting efficiency while enhancing the adsorption capacity of the porous probe is of great challenge.Herein,a bifunctional two-dimensional imine-based porous covalent organic framework(TTP-COF)probe was designed and synthesized from 1,3,5-tris(4-aminophenyl)benzene(TAPB)and 2,4,6-Triformylphloroglucinol(TP)ligand.TTP-COF displayed rapid detection of Cu^(2+)(limit of detection(LOD)=10 nmol·L^(−1) while achieving a high adsorption capacity of 214 mg·g^(−1)(pH=6)at room temperature with high reusability(>5 cycles).The key roles and contributions of highπ-conjugate and delocalized electrons in TABP and functional–OH groups in TP were proved.More importantly,the fluorescence quenching mechanism of TTP-COF was studied by density functional theory theoretical calculations,revealing the crucial role of intramolecular hydrogen bonds among C=N and–OH groups and the blocking of the excited state intramolecular proton transfer process in detecting process of Cu^(2+).
基金support from the National Natural Science Foundation of China(Nos.62205154 and 62205155)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Nos.NY221112 and NY222104)。
文摘X-ray detection plays a crucial role across various aspects of our daily lives,encompassing medical diagnoses,security screenings,and non-destructive examinations in industrial settings.Given the wide array of application contexts,a wealth of opportunities is entailed with the practical utilization of both organic and inorganic X-ray detection materials.A novel and promising contender in this realm is the emergence of metal-free organic halide perovskites(O-PVSKs),offering great opportunities and tremendous potential in X-ray detection.This potential can be attributed to the distinct crystalline configuration of O-PVSKs,where organic constituents are structured into an ABX3perovskite arrangement.Consequently,O-PVSKs exhibit captivating characteristics reminiscent of organic materials,such as lightweight nature and modifiability,all while retaining the distinctive traits associated with halide perovskites ranging from diverse structures to tunable optoelectronic properties.This review article delves into the intrinsic attributes of O-PVSKs and critically examines the viability of O-PVSKs in X-ray detection,through which key features that distinguish O-PVSKs from traditional organic semiconductors and perovskites are outlined.This is followed by a perspective given on their future avenues for exploration.
基金the National Natural Science Foundation of China(No.22075071)Harbin Manufacturing Science and Technology Innovation Talent Project(No.2022CXRCCG016)+1 种基金Outstanding Youth Science Foundation of Heilongjiang University(No.JCL202002)Special Project of Joint Dairy College in East University of Heilongjiang-National Dairy Engineering and Technology Research Center(No.LHXYDS202001).
文摘To achieve a lower detection limit has always been a goal of analytical chemists.Herein,we demonstrate the first picomolar level detection capability for Fe3+ion via luminescence detection technology.The results of structural analysis and theoretical calculation show that Fe3+ions are adsorbed on the central node of Eu-DBM(DBM=dibenzoylmethane)sensor in the form of single ion at ultralow concentration.Subsequently,the pathways of photo-induced charge and energy transfer of the obtained Eu-DBM@Fe^(3+)material have been changed,from the initial DBM-to-Eu^(3+)before Fe^(3+)adsorption to the ultimate DBM-to-Fe^(3+)after adsorption process,which quenches the luminescence of Eu3+ion.This work not only obtains the highly sensitive luminescence detection ability,but also innovatively proposes the single-ion adsorption mechanism,both of which have important scientific and application values for the development of more efficient detection agents in the future.
基金the Outstanding Youth Foundation of Jiangsu Province of China(No.BK20211548)the Yangzhou Science and Technology Plan Project(No.YZ2023246)the Qinglan Project of Yangzhou University,and the Research Innovation Plan of Graduate Education Innovation Project in Jiangsu Province(No.KYCX23_3530).
文摘In the early-stage diagnosis of lung cancer,the low-concentration(<5 ppm)volatile organic compounds(VOCs)are extensively identified to be the biomarkers for breath analysis.Herein,the urchin-like sodium(Na)-doped zinc oxide(ZnO)nanoneedles were synthesized through a hydrothermal strategy with the addition of different contents of citric acid.The Na-doped ZnO gas sensor with a 3:1 molar ratio of Na^(+)and citric acid showed outstanding sensing properties with an optimal selectivity to various VOCs(formaldehyde(HCOH),isopropanol,acetone,and ammonia)based on working temperature regulation.Specifically,significantly enhanced sensitivity(21.3@5 ppm)compared with pristine ZnO(~7-fold),low limit of detection(LOD)(298 ppb),robust humidity resistance,and long-term stability of formaldehyde sensing performances were obtained,which can be attributed to the formation of a higher concentration of oxygen vacancies(20.98%)and the active electron transitions.Furthermore,the improved sensing mechanism was demonstrated by the exquisite band structure and introduction of the additional acceptor level,which resulted in the narrowed bandgap of ZnO.
基金We acknowledge support from the equipment research and development projects of the Chinese Academy of Sciences,“On-chip integrated optical biochemical detection key technology research and development team,”E11YTB1001.
文摘In this work,an automated microfluidic chip that uses negative pressure to sample and analyze solutions with high temporal resolution was developed.The chip has a T-shaped channel for mixing the sample with a fluorescent indicator,a flow-focusing channel for generating droplets in oil,and a long storage channel for incubating and detecting the droplets.By monitoring the fluorescence intensity of the droplets,the device could detect changes in solution accurately over time.The chip can generate droplets at frequencies of up to 42 Hz with a mixing ratio of 1:1 and a temporal resolution of 3–6 s.It had excellent linearity in detecting fluorescein solution in the concentration range 1–5μM.This droplet microfluidic chip provides several advantages over traditional methods,including high temporal resolution,stable droplet generation,and faster flow rates.This approach could be applied to monitoring calcium ions with a dynamic range from 102 to 107 nM and a detection limit of 10 nM.