期刊文献+
共找到5,958篇文章
< 1 2 250 >
每页显示 20 50 100
Seismic performance and resilience of composite damping self-centering braced frame structures
1
作者 Longhe Xu Xingsi Xie Zhongxian Li 《Fundamental Research》 CAS CSCD 2024年第3期603-610,共8页
A magnetorheological self-centering brace(MR–SCB)has been proposed to improve the energy dissipation capability of the brace.In this paper,a 15-story MR–SCB braced frame is numerically analyzed to examine its seismi... A magnetorheological self-centering brace(MR–SCB)has been proposed to improve the energy dissipation capability of the brace.In this paper,a 15-story MR–SCB braced frame is numerically analyzed to examine its seismic performance and resilience.The MR–SCB provides higher lateral stiffness than the buckling restrained brace and greater energy dissipation capability than the existing self-centering brace.The brace also exhibits a reliable recentering capacity.Under rare earthquakes,the maximum average residual deformation ratio of the structure is less than the 0.5%limit.Under mega earthquakes,the maximum average interstory drift ratio of the structure does not exceed the 2.0%elastoplastic limit,and its maximum average floor acceleration ratio is 1.57.The effects of mainshock and aftershock on the structural behavior are also investigated.The interstory drift and residual deformation of the structure increase with the increase of the intensity of the aftershock.Under aftershocks with the same intensity as the mainshocks,the maximum increment of the residual deformation ratio of the structure is 81.8%,and the average interstory drift ratios of the 12^(th),7^(th),and 3^(rd)stories of the structure are increased by 13.4%,9.2%and 7.5%,respectively.The strong aftershock may significantly cause increased damage to the structure,and increase its collapse risk and residual deformation. 展开更多
关键词 braced frame structure self-centeringbrace Magnetorheological fluid Disc spring Seismic performance Seismic resilience Mainshock-aftershock
原文传递
Resilient performance of self-centering hybrid rocking walls with curved interface under pseudo-static loading
2
作者 Su Xing Yan Shi +1 位作者 Sun Xianglei Wang Tao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期65-85,共21页
Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during ... Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW. 展开更多
关键词 self-centering hybrid rocking wall(SCRW) monolithic shear wall(SW) earthquake resilient performance(ERP) curved interface rocking center
下载PDF
Validation of a steel dual-core self-centering brace (DC-SCB) for seismic resistance: from brace member to one-story one-bay braced frame tests 被引量:1
3
作者 Chung-Che CHOU Ping-Ting CHUNG +1 位作者 Tsung-Han WU Alexis Rafael Ovalle BEATO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第3期303-311,共9页
A steel dual-core self-centering brace (DC-SCB) is an innovative structural member that provides both energy dissipation and self-centering properties to structures, reducing maximum and residual drifts of structure... A steel dual-core self-centering brace (DC-SCB) is an innovative structural member that provides both energy dissipation and self-centering properties to structures, reducing maximum and residual drifts of structures in earthquakes. The axial deformation capacity of the DC-SCB is doubled by a parallel arrangement of two inner cores, one outer box and two sets of tensioning elements. This paper presents cyclic test results of a DC-SCB component and a full- scale one-story, one-bay steel frame with a DC-SCB. The DC-SCB that was near 8 m-long was tested to evaluate its cyclic behavior and durability. The DC-SCB performed well under a total of three increasing cyclic loading tests and 60 low- cycle fatigue loading tests without failure. The maximum axial load of the DC-SCB was near 1700 kN at an interstory drift of 2.5%. Moreover, a three-story dual-core self-centering braced frame (DC-SCBF) with a single-diagonal DC-SCB was designed and its first-story, one-bay DC-SCBF subassembly specimen was tested in multiple earthquake-type loadings. The one-story, one-bay subassembly frame specimen performed well up to an interstory drift of 2% with yielding at the column base and local buckling in the steel beam; no damage of the DC-SCB was found after all tests. The maximum residual drift of the DC-SCBF caused by beam local buckling was 0.5% in 2.0% drift cycles. 展开更多
关键词 dual-core self-centering brace (DC-SCB) braced frame tests residual deformation
原文传递
Seismic performance of a reinforced concrete building retrofitted with self-centering shape memory alloy braces 被引量:1
4
作者 Massimiliano Ferraioli Antonio Concilio Carmine Molitierno 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第3期785-809,共25页
Self-centering earthquake-resistant structures have received increased attention due to their ability to reduce post-earthquake residual deformations and,thus,repair time and cost.This stimulated the development of re... Self-centering earthquake-resistant structures have received increased attention due to their ability to reduce post-earthquake residual deformations and,thus,repair time and cost.This stimulated the development of recentering shape memory alloy(SMA)dampers that use superelastic nitinol wires to dissipate energy and self-center the structure.However,there are still a few case studies applications on full-scale RC buildings in the literature.Moreover,general guidelines or even simplified approaches for the practical design of SMA damped braces are still lacking.This paper focuses on evaluating the effect of using self-centering shape memory alloy dampers for buckling-restrained braces applied for the seismic retrofit of a complex RC building structure.A design method originally proposed for elastoplastic dampers was implemented to size the SMA dampers to be placed on selected spans and stories of a building.The effectiveness of the design procedure was demonstrated by nonlinear time-history analyses under different sets of earthquake strong ground motions.The analysis results show that the recentering shape memory alloy bracing system is effective in limiting the maximum transient inter-story drifts and reducing the residual inter-story drifts after strong seismic events,due to its excellent recentering behavior together with its not negligible energy dissipation capacity. 展开更多
关键词 RC buildings seismic retrofit buckling-restrained braces shape memory alloys dampers self-centering
下载PDF
Deterministic and probabilistic analysis of great-depth braced excavations:A 32 m excavation case study in Paris
5
作者 Tingting Zhang Julien Baroth +1 位作者 Daniel Dias Khadija Nejjar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1505-1521,共17页
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra... The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given. 展开更多
关键词 braced deep excavation Soil-wall interaction Stochastic finite element method Horizontal wall deflection SETTLEMENT Failure probability
下载PDF
Test and simulation of full-scale self-centering beam-to-column connection 被引量:8
6
作者 Deng Kailai Pan Peng +2 位作者 Alexandre Lam Pan Zhenhua Ye Lieping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期599-607,共9页
A new type of beam-to-column connection for steel moment flames, designated as a "self-centering connection," is studied. In this connection, bolted top-and-seat angles, and post-tensioned (PT) high-strength steel... A new type of beam-to-column connection for steel moment flames, designated as a "self-centering connection," is studied. In this connection, bolted top-and-seat angles, and post-tensioned (PT) high-strength steel strands running along the beam are used. The PT strands tie the beam flanges on the column flange to resist moment and provide self-centering force. After an earthquake, the connections have zero deformation, and can be restored to their original status by simply replacing the angles. Four full-scale connections were tested under cyclic loading. The strength, energy-dissipation capacity, hysteresis curve, as well as angles and PT strands behavior of the connections are investigated. A general FEM analysis program called ABAQUS 6.9 is adopted to model the four test specimens. The numerical and test results match very well. Both the test and analysis results suggest that: (1) the columns and beams remain elastic while the angles sustain plastic deformations for energy dissipation when the rotation of the beam related to the column equals 0.05 tad, (2) the energy dissipation capacity is enhanced when the thickness of the angle is increased, and (3) the number of PT strands has a significant influence on the behavior of the connections, whereas the distance between the strands is not as important to the performance of the connection. 展开更多
关键词 steel frame CONNECTION ANGLE post-tensioned prestressing self-centering
下载PDF
Shake-table testing of a self-centering precast reinforced concrete frame with shear walls 被引量:10
7
作者 Lu Xilin Yang Boya Zhao Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第2期221-233,共13页
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls ... The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination ofunbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions. 展开更多
关键词 self-centering shake-table test RC frame with shear walls PRECAST unbonded post-tensioning seismicperformance
下载PDF
Self-centering seismic retrofit scheme for reinforced concrete frame structures:SDOF system study 被引量:4
8
作者 Yunfeng Zhang and Xiaobin Hu Department of Civil and Environmental Engineering,University of Maryland,College Park,MD 20742,USA 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期271-283,共13页
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min... This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake. 展开更多
关键词 EARTHQUAKE reinforced concrete frame structure nonlinear analysis SDOF system seismic retrofit self-centering
下载PDF
Seismic performance evaluation of a self-centering precast reinforced concrete frame structure 被引量:3
9
作者 Mao Chenxi Wang Zhenying 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第4期943-968,共26页
The seismic performance of a five-story,four-bay,self-centering precast reinforced concrete frame(SC-RCF),which was redesigned using the direct displacement-based design method,was analytically investigated.The analyt... The seismic performance of a five-story,four-bay,self-centering precast reinforced concrete frame(SC-RCF),which was redesigned using the direct displacement-based design method,was analytically investigated.The analytical model of the overall structure was developed in OpenSees.The multi-spring contact element was adopted to simulate gap open-close behavior at connection interfaces.The limit states of external mild steel dampers and unbonded post-tensioning strands were considered.Static pushover analyses were performed up to the roof drift of 10%.The nonlinear dynamic responses under four groups of ground motions(with different fault distances and site conditions)at six hazard levels(from the service to the very rare earthquake(VRE))were compared.Incremental dynamic analyses were implemented to quantify the structural collapse risk.The results showed that the structural responses of SC-RCF were satisfactory under all levels of earthquakes.The collapse safety of the structure under earthquakes up to VRE1 was adequate,while the structure would collapse to a large extent under VRE2 and VRE3. 展开更多
关键词 self-centering system precast RC frame unbonded post-tensioning incremental dynamic analysis collapse fragility
下载PDF
OPTIMIZING DESIGN OF MECHANICAL SELF-CENTERING DEVICE FOR SUSPENSION HEIGHT 被引量:2
10
作者 CAO Min ZHANG Yongchao YU Fan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期69-75,共7页
Firstly, in view of the respective defects of existing self-centering devices for vehicle suspension height, the design scheme of the proposed mechanical self-centering device for suspension height is described. Takin... Firstly, in view of the respective defects of existing self-centering devices for vehicle suspension height, the design scheme of the proposed mechanical self-centering device for suspension height is described. Taking the rear suspension of a certain light bus as a research example, the structures and parameters of the novel device are designed and ascertained. Then, the road excitation models, the performance evaluation indexes and the half-vehicle model are built, the simulation outputs of time and frequency domain are obtained with the road excitations of random and pulse by using MATLAB/Simulink software. So the main characteristics of the self-centering suspension are presented preliminarily. Finally, a multi-objective parameter design optimization model for the self-centering device is built by weighted sum approach, and optimal solution is obtained by adopting complex approach. The relevant choosing-type parameters for self-centering device components are deduced by using discrete variable optimal method, and the optimal results are verified and analyzed. So the performance potentials of the self-centering device are exerted fully in condition of ensuring overall suspension performances. 展开更多
关键词 Suspension height self-centering Vehicle height adjustment Optimizing design Multi-objective optimization
下载PDF
Numerical simulation of the seismic behavior of self-centering steel beam-column connections with bottom flange friction devices 被引量:3
11
作者 Guo Tong Song Lianglong Zhang Guodong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期229-238,共10页
A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthqu... A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthquakes. This paper presents a numerical simulation of self-centering beam-column connections with BFFDs, in which the gap opening/closing at the beam-column interfaces is simulated by using pairs of zero-length elements with compression-only material properties, and the energy dissipation due to friction is simulated by using truss elements with specified hysteretic behavior. In particular, the effect of the friction bolt bearing against the slotted plate in the BFFDs was modeled, so that the increase in lateral force and the loss of friction force due to the bolt bearing could be taken into account. Parallel elastic-perfectly plastic gap (ElasticPPGap) materials in the Open System for Earthquake Engineering Simulation (OpenSees) were used with predefined gaps to specify the sequence that each bolt went into the bearing and the corresponding increase in bending stiffness. The MinMax material in OpenSees is used to specify the minimum and maximum values of strains of the ElasticPPGap materials. To consider the loss of friction force due to bok bearing, a number of parallel hysteretic materials were used, and the failure of these materials in sequence simulated the gradual loss of friction force. Analysis results obtained by using the proposed numerical model are discussed and compared with the test results under cyclic loadings and the seismic loading, respectively. 展开更多
关键词 numerical simulation post tensioned self-centering moment resisting steel frame bottom flange frictiondevice bolt bearing
下载PDF
一类brace中的thin边
12
作者 林梦丹 卢福良 《闽南师范大学学报(自然科学版)》 2023年第4期107-113,共7页
证明若一个brace含有一个四圈C_(4),且该四圈中包含两个相邻的三度点,则该brace至少有一条thin边在该C_(4)中.
关键词 thin边 brace 紧割 匹配覆盖图
下载PDF
Internal-Brace联合改良的Brostrom术治疗慢性踝关节外侧不稳的疗效 被引量:2
13
作者 杨瑞 郑铁钢 +3 位作者 张全顺 恩和 张琰冰 刘鹏飞 《武警医学》 CAS 2023年第2期119-122,共4页
目的评价Internal-Brace联合改良的Brostrom术治疗慢性踝关节外侧不稳的疗效。方法回顾性分析陆军第八十一集团军医院骨科2019-01至2021-12收治的29例慢性踝关节外侧不稳患者,全部行Internal-Brace联合改良的Brostrom术,采用美国足踝外... 目的评价Internal-Brace联合改良的Brostrom术治疗慢性踝关节外侧不稳的疗效。方法回顾性分析陆军第八十一集团军医院骨科2019-01至2021-12收治的29例慢性踝关节外侧不稳患者,全部行Internal-Brace联合改良的Brostrom术,采用美国足踝外科协会(AOFAS)踝-后足评分系统,前抽屉试验,Karlsson-Peterson评分系统进行手术效果评价,采用视觉模拟评分法(VAS)评价手术前、后踝部疼痛。结果所有患者均获得随访,其中28例末次随访时均能完成3 km跑等训练任务,基本恢复伤前训练水平,1例术后3 d出现切口感染,感染率3.4%;28例AOFAS评分由手术前(34.7±7.4)分提高到末次随访时的(86.6±3.3)分,差异有统计学意义(P<0.01),所有患者术后前抽屉试验阴性,Karlsson-Peterson评分由术前(62.4±9.5)分提高到末次随访时的(92.6±4.5)分,差异有统计学意义(P<0.01),VAS评分由术前(7.1±0.7)分降低到末次随访时的(2.3±0.8)分,差异有统计学意义(P<0.01)。结论Internal-Brace联合改良的Brostrom术治疗慢性踝关节外侧不稳效果显著,能明显改善患者踝关节功能。 展开更多
关键词 距腓前韧带损伤 Internal-brace 改良Brostrom术 慢性踝关节不稳
下载PDF
Internal brace与带线锚钉通过改良Broström术治疗慢性踝关节不稳的疗效对比
14
作者 欧娈海 王代荣 +4 位作者 龙汝锋 李巍 何国民 刘建忠 赵国平 《足踝外科电子杂志》 2023年第3期34-38,共5页
目的比较internal brace(IB)与带线锚钉通过改良Broström术治疗慢性踝关节不稳的临床疗效。方法回顾性分析2019年5月至2022年2月在桂林市人民医院本院关节骨科行手术治疗的42例慢性踝关节外侧不稳患者资料,根据距腓前韧带修补所用... 目的比较internal brace(IB)与带线锚钉通过改良Broström术治疗慢性踝关节不稳的临床疗效。方法回顾性分析2019年5月至2022年2月在桂林市人民医院本院关节骨科行手术治疗的42例慢性踝关节外侧不稳患者资料,根据距腓前韧带修补所用材料的不同将患者分为IB组(19例)和带线锚钉组(23例)。比较两组患者一般资料、手术时间、并发症发生率、术后完全负重行走时间、术后恢复跑步的时间、美国足踝外科协会(American Orthopedic Foot and Ankle Society,AOFAS)踝-后足功能评分、视觉模拟评分法(visual analog scale,VAS)评分。结果所有患者术后均获得随访,随访时间12~18个月,平均(13.8±5.3)个月。两组患者基线资料差异无统计学意义(P>0.05);两组各有1例术口拆线后再出现渗液,换药后愈合;两组各有2例术口区域感觉障碍,除IB组有1例术后半年仍未完全恢复外,其余3例术后2~3个月恢复;IB组患者术后6周随访时AOFAS评分优于带线锚钉组,差异有统计学意义(t=2.239,P=0.025),但术后6周时VAS评分比较差异无统计学意义(t=0.308,P=0.760);末次随访时AOFAS评分和VAS评分比较,两组之间差异无统计学意义(t=0.045,P=0.965;t=0.203,P=0.840);IB组术后完全负重行走时间、术后恢复跑步的时间显著早于带线锚钉组,差异有统计学意义(t=26.566,P<0.01;t=4.838,P<0.01)。结论IB与带线锚钉通过改良Broström术开放治疗慢性踝关节不稳的临床疗效满意,且使用IB在早期康复和重返运动方面优于带线锚钉。 展开更多
关键词 踝关节不稳 距腓前韧带 internal brace 改良Broström
下载PDF
耐张型悬索支撑输电结构风振非线性有限元分析 被引量:1
15
作者 李正良 王邦杰 王涛 《振动与冲击》 EI CSCD 北大核心 2024年第2期71-78,290,共9页
耐张型悬索支撑输电结构是一类适用于山地地形的新型输电结构,其主要受风荷载控制。为此,该研究发展了该输电结构风振非线性有限元分析模型并开展了结构风振响应分析。考虑结构的几何非线性,通过单元应变能与位移的关系推导了支撑悬索... 耐张型悬索支撑输电结构是一类适用于山地地形的新型输电结构,其主要受风荷载控制。为此,该研究发展了该输电结构风振非线性有限元分析模型并开展了结构风振响应分析。考虑结构的几何非线性,通过单元应变能与位移的关系推导了支撑悬索和输电线的三维杆单元切线刚度矩阵;给出了支撑悬索和输电线的单元质量矩阵、阻尼矩阵以及由风荷载等效而得的单元节点荷载向量;基于非线性有限元理论,建立了耐张型悬索支撑输电结构风振非线性动力方程,并采用了结合Newton-Raphson迭代法的Newmark-β法求解非线性动力方程;通过所建立的动力学分析模型对两跨耐张型悬索支撑输电结构进行了风致非线性振动分析。算例分析结果表明:①提出的模型具有较好的计算精度和较高的计算效率;②悬索支撑导线部分的低阶固有频率比悬索支撑地线部分的低阶固有频率更低;③该输电结构的输电线位移响应受风荷载影响较大;④输电线侧向位移和支撑悬索张力受风速和风向角影响均较显著。 展开更多
关键词 输电结构 悬索支撑 风致振动 非线性有限元
下载PDF
新型GFRP-钢屈曲约束支撑设计与受力性能分析 被引量:1
16
作者 熊仲明 郑坤 +2 位作者 陈帜 谯鸿程 阿鑫 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期156-166,共11页
为发展轻质、耐腐蚀的屈曲约束支撑,以玻璃纤维(GFRP)拉挤型材和缠绕工艺构造支撑约束构件,H型钢为内芯,提出一种新型GFRP-钢屈曲约束支撑.通过理论分析与数值模拟,探究了支撑内芯的屈曲模态发展规律;结合GFRP的各向异性和层合板结构特... 为发展轻质、耐腐蚀的屈曲约束支撑,以玻璃纤维(GFRP)拉挤型材和缠绕工艺构造支撑约束构件,H型钢为内芯,提出一种新型GFRP-钢屈曲约束支撑.通过理论分析与数值模拟,探究了支撑内芯的屈曲模态发展规律;结合GFRP的各向异性和层合板结构特性,建立了GFRP约束构件的设计参数计算公式;分析了支撑间厚比、翼缘和腹板宽厚比及纤维角度对GFRP约束构件与内芯相互作用特征的影响规律,并给出了合理取值;通过算例分析,验证了该设计方法的可靠性.结果表明:H型钢内芯依次发生翼缘局部屈曲、绕弱轴整体屈曲、腹板局部屈曲和绕强轴整体屈曲,且整体屈曲模态较低,而局部屈曲模态较高;间厚比和宽厚比均会影响内芯的屈曲模态发展,进而改变约束构件的受力状态,间厚比宜为0.125 0~0.50,宽厚比宜小于6.29;GFRP约束构件主应力方向接近45°,为充分发挥纤维纵向承载能力,纤维宜按45°相互垂直交叉布置. 展开更多
关键词 玻璃纤维 屈曲约束支撑 受力性能 设计方法
下载PDF
钢框架-偏心支撑结构消能梁暗置侧向支撑设计
17
作者 骆顺心 刘旭东 +3 位作者 沈琪 彭林立 刘炳清 熊世树 《建筑技术》 2024年第18期2196-2200,共5页
在钢框架-偏心支撑结构中,针对钢结构住宅等建筑中不能接受常规消能梁侧向支撑的情况,设计了一种在消能梁段端部的楼板内设置型钢连接件及暗梁组成的暗置侧向支撑。有限元模拟分析表明,在规范规定的消能梁段下翼缘侧向水平荷载的作用下... 在钢框架-偏心支撑结构中,针对钢结构住宅等建筑中不能接受常规消能梁侧向支撑的情况,设计了一种在消能梁段端部的楼板内设置型钢连接件及暗梁组成的暗置侧向支撑。有限元模拟分析表明,在规范规定的消能梁段下翼缘侧向水平荷载的作用下,该消能梁暗置侧向支撑能显著减小消能梁的扭转变形和侧向弯曲变形;在考虑消能梁上局部楼板失效的情况下,暗置侧向支撑也能提供消能梁合适的扭转约束刚度。通过某工程的原位静荷载试验,验证了该暗置支撑对消能梁发挥的预期侧向支撑作用。 展开更多
关键词 钢框架-偏心支撑结构 装配式钢结构 消能梁 暗置侧向支撑 静载试验
下载PDF
柱脚不均匀沉降对单斜撑钢井架的影响与治理研究
18
作者 李林 穆德君 +3 位作者 刘勇 李翔宇 阴琪翔 常鸿飞 《煤炭工程》 北大核心 2024年第6期80-88,共9页
长期的荷载作用可能导致矿井井架变形和不均匀沉降,甚至可能引起结构整体倾覆。针对童亭煤矿钢结构单斜撑井架的沉降和受力特点,采用ANSYS有限元软件构建了单斜撑井架结构模型,研究了斜撑基础不均匀沉降对井架结构内力的影响规律,并对... 长期的荷载作用可能导致矿井井架变形和不均匀沉降,甚至可能引起结构整体倾覆。针对童亭煤矿钢结构单斜撑井架的沉降和受力特点,采用ANSYS有限元软件构建了单斜撑井架结构模型,研究了斜撑基础不均匀沉降对井架结构内力的影响规律,并对井架内力受不均匀沉降影响机理进行分析。结果表明:①立架与斜撑间的沉降差值会引起立架C柱底和顶部横梁的应力呈线性增加,对斜撑影响较小;X方向沉降率达到2.04‰时,立架最大应力出现于C柱底,约为148 MPa,低于钢材设计强度的限值。②两斜撑基础间的不均匀沉降对单斜撑井架的不利影响更大,断绳工况下的Y方向沉降率为0.88‰时即发生应力超限破坏,略低于《矿山井架设计标准》中对单斜撑式钢井架斜撑基础间最大1‰的沉降差值限制。③不均匀沉降导致井架内力重分布,井架最大应力值和位移值均随沉降值增大而增大,其中立架C柱和斜撑上下天轮梁为最危险部位。针对井架沉降现状,提出了重点部位的加固和顶升方案,加固后井架内力和变形均大幅降低,静力性能提升30%。 展开更多
关键词 高耸钢结构 单斜撑井架 不均匀沉降 静力性能 治理措施
下载PDF
附加消能子结构在抗震加固工程中的应用
19
作者 侯宏涛 杨立华 +1 位作者 王琴 张鑫 《工程抗震与加固改造》 北大核心 2024年第3期153-160,共8页
介绍了消能子结构的研究现状,文中以某小学教学楼抗震加固工程为例,阐述了采用附加消能子结构配合屈曲约束支撑进行抗震加固的设计过程,采用阵型分解反应谱法和时程分析法分析并对比了加固前后结构的抗震性能变化,基于现有研究成果,进... 介绍了消能子结构的研究现状,文中以某小学教学楼抗震加固工程为例,阐述了采用附加消能子结构配合屈曲约束支撑进行抗震加固的设计过程,采用阵型分解反应谱法和时程分析法分析并对比了加固前后结构的抗震性能变化,基于现有研究成果,进行了消能子结构的加固设计和罕遇地震作用下的承载力复核。结果表明:采用附加消能子结构对结构进行抗震加固,在提高建筑抗震性能的同时,可以不影响建筑内部功能。加固后,结构整体刚度增加,自振周期变短,层间剪力增大,整体变形变小,结构的整体受力状态和变形模式得到改善,房屋整体抗震性能提升。罕遇地震作用下,结构整体塑性程度较低,损伤屈服机制更加合理,可以实现“大震不倒”的设防目标。消能子结构为连接消能器和主体结构的关键构件,应重点进行设计,采用柱的N-M曲线进行承载力复核比较便捷。文中设计思路可为类似工程提供借鉴和参考。 展开更多
关键词 附加消能子结构 屈曲约束支撑 抗震加固 Midas Gen
下载PDF
集中荷载作用下弹性支撑矩形钢管混凝土翼缘工字形梁稳定性能研究
20
作者 刘迎春 杨开琳 +3 位作者 计静 张文福 邓世林 张智超 《河北工程大学学报(自然科学版)》 CAS 2024年第2期7-15,共9页
为研究弹性支撑刚度对矩形钢管混凝土翼缘工字形梁稳定性能的影响,开展了集中荷载作用下3根带有不同弹性支撑刚度的矩形钢管混凝土翼缘工字形梁的稳定性能试验,研究试验梁的位移及应变的变化规律,获得梁的失稳形式和稳定承载力。试验结... 为研究弹性支撑刚度对矩形钢管混凝土翼缘工字形梁稳定性能的影响,开展了集中荷载作用下3根带有不同弹性支撑刚度的矩形钢管混凝土翼缘工字形梁的稳定性能试验,研究试验梁的位移及应变的变化规律,获得梁的失稳形式和稳定承载力。试验结果表明,整个加载破坏过程分为三个阶段,即弹性阶段、弹塑性阶段和破坏阶段,3根试验梁均发生整体弯扭屈曲失稳。随着弹性支撑刚度增加,梁稳定承载力增大,验证了设置弹性支撑可有效地提高该梁的稳定承载力。在试验基础上,利用ANSYS有限元软件对该梁进行非线性屈曲分析,将获得的稳定承载力与试验结果进行对比,误差均小于5%,从而验证有限元分析方法的正确性。最后,研究了混凝土强度、上翼缘含钢率和腹板高厚比等参数对该类梁稳定性能的影响规律。研究表明,增大上翼缘钢管含钢率和减小腹板高厚比均可明显提高该类梁的稳定承载力,而增强混凝土强度对梁的稳定承载力提高较小。 展开更多
关键词 钢管混凝土翼缘梁 弹性支撑 整体稳定 承载力
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部