Pin-supported(PS)walls have been proven effective in avoiding weak story failure of frame structures by increasing the height-wise continuous stiffness and producing uniform distribution of story drifts.However,little...Pin-supported(PS)walls have been proven effective in avoiding weak story failure of frame structures by increasing the height-wise continuous stiffness and producing uniform distribution of story drifts.However,little attention has been given to the floor velocity or acceleration responses of PS wall-frame structures,which predominate the seismic damage of various nonstructural components that are critical to the immediate occupancy and quick recovery of buildings.This paper presents a numerical evaluation of the floor velocity and acceleration responses of PS wall-frame structures,highlighting the effects of different types of dampers accompanying the PS walls.The results show that the PS walls alone significantly increase the peak floor velocity(PFV)and peak floor acceleration(PFA)responses.PS wall-frame structures with either steel or viscoelastic(VE)dampers are much less effective in reducing the PFV or PFA responses than they are in reducing the peak inter-story drift ratio(PIDR).The impact of this behavior is demonstrated by a seismic fragility analysis that incorporates demand parameters combining the maximum PIDR,average PFV and PFA.The results show that the use of VE dampers rather than hysteretic dampers results in better protection of nonstructural components in PS wall-frame structures.展开更多
基金National Natural Science Foundation of China under Grant No.51878629。
文摘Pin-supported(PS)walls have been proven effective in avoiding weak story failure of frame structures by increasing the height-wise continuous stiffness and producing uniform distribution of story drifts.However,little attention has been given to the floor velocity or acceleration responses of PS wall-frame structures,which predominate the seismic damage of various nonstructural components that are critical to the immediate occupancy and quick recovery of buildings.This paper presents a numerical evaluation of the floor velocity and acceleration responses of PS wall-frame structures,highlighting the effects of different types of dampers accompanying the PS walls.The results show that the PS walls alone significantly increase the peak floor velocity(PFV)and peak floor acceleration(PFA)responses.PS wall-frame structures with either steel or viscoelastic(VE)dampers are much less effective in reducing the PFV or PFA responses than they are in reducing the peak inter-story drift ratio(PIDR).The impact of this behavior is demonstrated by a seismic fragility analysis that incorporates demand parameters combining the maximum PIDR,average PFV and PFA.The results show that the use of VE dampers rather than hysteretic dampers results in better protection of nonstructural components in PS wall-frame structures.