期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Role of dampers on the seismic performance of pin-supported wall-frame structures 被引量:1
1
作者 Wang Xiaoyue Qu Zhe Gong Ting 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期453-467,共15页
Pin-supported(PS)walls have been proven effective in avoiding weak story failure of frame structures by increasing the height-wise continuous stiffness and producing uniform distribution of story drifts.However,little... Pin-supported(PS)walls have been proven effective in avoiding weak story failure of frame structures by increasing the height-wise continuous stiffness and producing uniform distribution of story drifts.However,little attention has been given to the floor velocity or acceleration responses of PS wall-frame structures,which predominate the seismic damage of various nonstructural components that are critical to the immediate occupancy and quick recovery of buildings.This paper presents a numerical evaluation of the floor velocity and acceleration responses of PS wall-frame structures,highlighting the effects of different types of dampers accompanying the PS walls.The results show that the PS walls alone significantly increase the peak floor velocity(PFV)and peak floor acceleration(PFA)responses.PS wall-frame structures with either steel or viscoelastic(VE)dampers are much less effective in reducing the PFV or PFA responses than they are in reducing the peak inter-story drift ratio(PIDR).The impact of this behavior is demonstrated by a seismic fragility analysis that incorporates demand parameters combining the maximum PIDR,average PFV and PFA.The results show that the use of VE dampers rather than hysteretic dampers results in better protection of nonstructural components in PS wall-frame structures. 展开更多
关键词 strong spine system energy-dissipating device floor acceleration floor velocity nonstructural damage
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部