期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Seismic performance of a reinforced concrete building retrofitted with self-centering shape memory alloy braces 被引量:1
1
作者 Massimiliano Ferraioli Antonio Concilio Carmine Molitierno 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第3期785-809,共25页
Self-centering earthquake-resistant structures have received increased attention due to their ability to reduce post-earthquake residual deformations and,thus,repair time and cost.This stimulated the development of re... Self-centering earthquake-resistant structures have received increased attention due to their ability to reduce post-earthquake residual deformations and,thus,repair time and cost.This stimulated the development of recentering shape memory alloy(SMA)dampers that use superelastic nitinol wires to dissipate energy and self-center the structure.However,there are still a few case studies applications on full-scale RC buildings in the literature.Moreover,general guidelines or even simplified approaches for the practical design of SMA damped braces are still lacking.This paper focuses on evaluating the effect of using self-centering shape memory alloy dampers for buckling-restrained braces applied for the seismic retrofit of a complex RC building structure.A design method originally proposed for elastoplastic dampers was implemented to size the SMA dampers to be placed on selected spans and stories of a building.The effectiveness of the design procedure was demonstrated by nonlinear time-history analyses under different sets of earthquake strong ground motions.The analysis results show that the recentering shape memory alloy bracing system is effective in limiting the maximum transient inter-story drifts and reducing the residual inter-story drifts after strong seismic events,due to its excellent recentering behavior together with its not negligible energy dissipation capacity. 展开更多
关键词 RC buildings seismic retrofit buckling-restrained braces shape memory alloys dampers self-centering
下载PDF
Optimization of design parameters for controlled rocking steel braced dual-frames
2
作者 Sobhan Ghasemi M.Firoozi Nezamabadi +1 位作者 Abdolreza S.Moghadam Mahmood Hosseini 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期1053-1068,共16页
A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensi... A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensioned(PT)cables and replaceable devices or fuses to provide overturning resistance and dissipate energy,respectively.Although CR-CSBFs are not officially legalized in globally valid codes for new buildings,it is expected to be presented in them in the near future.The main goal of this study is to determine the optimal design parameters consist of the yield strength and modulus of elasticity of the fuse,the initial force of the PT cable,and the gravity load on the rocking column,considering different heights of the frame,spanning ratios and ground motion types for dual-configuration CR-CSBF.Nonlinear time-history analyses are performed in OpenSees.This study aims to define the optimal input variables as effective design parameters of CR-CSBFs by comparing four seismic responses consisting of story drift,roof displacement,roof acceleration and base shear,and also using the Euclidean metric optimization method.Despite the previous research,this study is innovative and first of its kind.The results demonstrate that the optimal design parameters are variable for various conditions. 展开更多
关键词 self-centering rocking steel braced frame design parameters OPTIMIZATION low damage
下载PDF
Validation of a steel dual-core self-centering brace (DC-SCB) for seismic resistance: from brace member to one-story one-bay braced frame tests 被引量:1
3
作者 Chung-Che CHOU Ping-Ting CHUNG +1 位作者 Tsung-Han WU Alexis Rafael Ovalle BEATO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第3期303-311,共9页
A steel dual-core self-centering brace (DC-SCB) is an innovative structural member that provides both energy dissipation and self-centering properties to structures, reducing maximum and residual drifts of structure... A steel dual-core self-centering brace (DC-SCB) is an innovative structural member that provides both energy dissipation and self-centering properties to structures, reducing maximum and residual drifts of structures in earthquakes. The axial deformation capacity of the DC-SCB is doubled by a parallel arrangement of two inner cores, one outer box and two sets of tensioning elements. This paper presents cyclic test results of a DC-SCB component and a full- scale one-story, one-bay steel frame with a DC-SCB. The DC-SCB that was near 8 m-long was tested to evaluate its cyclic behavior and durability. The DC-SCB performed well under a total of three increasing cyclic loading tests and 60 low- cycle fatigue loading tests without failure. The maximum axial load of the DC-SCB was near 1700 kN at an interstory drift of 2.5%. Moreover, a three-story dual-core self-centering braced frame (DC-SCBF) with a single-diagonal DC-SCB was designed and its first-story, one-bay DC-SCBF subassembly specimen was tested in multiple earthquake-type loadings. The one-story, one-bay subassembly frame specimen performed well up to an interstory drift of 2% with yielding at the column base and local buckling in the steel beam; no damage of the DC-SCB was found after all tests. The maximum residual drift of the DC-SCBF caused by beam local buckling was 0.5% in 2.0% drift cycles. 展开更多
关键词 dual-core self-centering brace (DC-SCB) braced frame tests residual deformation
原文传递
Probabilistic safety assessment of self-centering steel braced frame
4
作者 Navid RAHGOZAR Nima RAHGOZAR Abdolreza S. MOGHADAM 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2018年第1期163-182,共20页
The main drawback of conventional braced frames is implicitly accepting structural damage under the design earthquake load, which leads to considerable economic losses. Controlled rocking self-centering system as a mo... The main drawback of conventional braced frames is implicitly accepting structural damage under the design earthquake load, which leads to considerable economic losses. Controlled rocking self-centering system as a modem low-damage system is capable of minimizing the drawbacks of conventional braced frames. This paper quantifies main limit states and investigates the seismic performance of self-centering braced frame using a Probabilistic Safety Assessment procedure. Margin of safety, confidence level, and mean annual frequency of the self-centering archetypes for their main limit states, including PT yield, fuse fracture, and global collapse, are established and are compared with their acceptance criteria. Considering incorporating aleatory examined. Results of the investigation indicate that the provide the adequate margin of safety against exceeding and epistemic uncertainties, the efficiency of the system is design of low- and mid-rise self-centering archetypes could the undesirable limit-states. 展开更多
关键词 self-centering steel braced frame mean annual frequency safety assessment confidence level margin of safety
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部