In this study, whole-oil gas chromatographic fingerprint analyses were performed on oils from the Es3^3 reservoir in the Liubei area of the Nanpu Sag. The gas chromatographic peaks of cyclic and branched alkanes with ...In this study, whole-oil gas chromatographic fingerprint analyses were performed on oils from the Es3^3 reservoir in the Liubei area of the Nanpu Sag. The gas chromatographic peaks of cyclic and branched alkanes with relatively high resolution from nCl0 to nC25 were selected to establish a database of whole-oil gas chromatographic peak height ratio fingerprints. Reservoir fluid connectivity was identified by using clustering analysis. This method can reflect the gas chromatography fingerprint information accurately and entirely, and avoid the one-sidedness of the star diagram method which only selects several fixed gas chromatographic peaks.展开更多
A design of a high-speed multi-core processor with compact size is a trending approach in the Integrated Circuits(ICs)fabrication industries.Because whenever device size comes down into narrow,designers facing many po...A design of a high-speed multi-core processor with compact size is a trending approach in the Integrated Circuits(ICs)fabrication industries.Because whenever device size comes down into narrow,designers facing many power den-sity issues should be reduced by scaling threshold voltage and supply voltage.Initially,Complementary Metal Oxide Semiconductor(CMOS)technology sup-ports power saving up to 32 nm gate length,but further scaling causes short severe channel effects such as threshold voltage swing,mobility degradation,and more leakage power(less than 32)at gate length.Hence,it directly affects the arithmetic logic unit(ALU),which suffers a significant power density of the scaled multi-core architecture.Therefore,it losses reliability features to get overheating and increased temperature.This paper presents a novel power mini-mization technique for active 4-bit ALU operations using Fin Field Effect Tran-sistor(FinFET)at 22 nm technology.Based on this,a diode is directly connected to the load transistor,and it is active only at the saturation region as a function.Thereby,the access transistor can cutoff of the leakage current,and sleep transis-tors control theflow of leakage current corresponding to each instant ALU opera-tion.The combination of transistors(access and sleep)reduces the leakage current from micro to nano-ampere.Further,the power minimization is achieved by con-necting the number of transistors(6T and 10T)of the FinFET structure to ALU with 22 nm technology.For simulation concerns,a Tanner(T-Spice)with 22 nm technology implements the proposed design,which reduces threshold vol-tage swing,supply power,leakage current,gate length delay,etc.As a result,it is quite suitable for the ALU architecture of a high-speed multi-core processor.展开更多
Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive...Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the defauk mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy sub- jects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the impor- tance of the interaction between these regions in pain processing.展开更多
The environmental pollution,as well as gradual depletion of mineral resources has encouraged the world to move into renewable energy sources for generation of electricity.At present,the cost of using renewable energy ...The environmental pollution,as well as gradual depletion of mineral resources has encouraged the world to move into renewable energy sources for generation of electricity.At present,the cost of using renewable energy sources,such as sunshine and wind in electricity generation has significantly reduced.This has led to higher penetration of renewable energy into the grid.However,both wind and solar energy photovoltaics are unpredictable energies which reduce the reliability and resiliency of the grid.The integration of battery energy storage system in the grid is one of the proficient solutions to the problem.There are numerous grid connected renewable energy based battery projects that have been deployed in different countries around the world for research,development and commercial application.This review paper will discuss some of the projects based on the battery connected wind and solar energy power generation systems that can operate both in grid connected and grid independent modes.The projects discussed in this paper are selected based on the availability of information.The battery energy storage system(BESS)incorporated in each of the project is found to increase the stability and performance of the grid by addressing the mismatch between power generation and the load of the grid created due to intermittent nature of renewable energy sources.展开更多
In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,...In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,in the process of researching new energy farms,there are some problems when they are integrated into the power system.In order to ensure the stability of new energy power plants,it is necessary to conduct an in-depth analysis of the grid connection technology of new energy farms.In the study,it is necessary to learn about the specific problems of the stability of the grid connection of new energy power plants,and to clarify the specific application of the grid connection technology of new energy power plants from the application principle and advantages of the grid connection technology of new energy power plants.Through simulation experiments,the positive effect of grid connection technology of new energy power plants in improving the stability of power systems was determined.展开更多
基金funded by Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (Project DMSM201009)Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education, China (Project TPR-2010-29)
文摘In this study, whole-oil gas chromatographic fingerprint analyses were performed on oils from the Es3^3 reservoir in the Liubei area of the Nanpu Sag. The gas chromatographic peaks of cyclic and branched alkanes with relatively high resolution from nCl0 to nC25 were selected to establish a database of whole-oil gas chromatographic peak height ratio fingerprints. Reservoir fluid connectivity was identified by using clustering analysis. This method can reflect the gas chromatography fingerprint information accurately and entirely, and avoid the one-sidedness of the star diagram method which only selects several fixed gas chromatographic peaks.
文摘A design of a high-speed multi-core processor with compact size is a trending approach in the Integrated Circuits(ICs)fabrication industries.Because whenever device size comes down into narrow,designers facing many power den-sity issues should be reduced by scaling threshold voltage and supply voltage.Initially,Complementary Metal Oxide Semiconductor(CMOS)technology sup-ports power saving up to 32 nm gate length,but further scaling causes short severe channel effects such as threshold voltage swing,mobility degradation,and more leakage power(less than 32)at gate length.Hence,it directly affects the arithmetic logic unit(ALU),which suffers a significant power density of the scaled multi-core architecture.Therefore,it losses reliability features to get overheating and increased temperature.This paper presents a novel power mini-mization technique for active 4-bit ALU operations using Fin Field Effect Tran-sistor(FinFET)at 22 nm technology.Based on this,a diode is directly connected to the load transistor,and it is active only at the saturation region as a function.Thereby,the access transistor can cutoff of the leakage current,and sleep transis-tors control theflow of leakage current corresponding to each instant ALU opera-tion.The combination of transistors(access and sleep)reduces the leakage current from micro to nano-ampere.Further,the power minimization is achieved by con-necting the number of transistors(6T and 10T)of the FinFET structure to ALU with 22 nm technology.For simulation concerns,a Tanner(T-Spice)with 22 nm technology implements the proposed design,which reduces threshold vol-tage swing,supply power,leakage current,gate length delay,etc.As a result,it is quite suitable for the ALU architecture of a high-speed multi-core processor.
基金supported by the Science and Technology Foundation of Guangdong Province of China,No.2012B031800305
文摘Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the defauk mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy sub- jects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the impor- tance of the interaction between these regions in pain processing.
文摘The environmental pollution,as well as gradual depletion of mineral resources has encouraged the world to move into renewable energy sources for generation of electricity.At present,the cost of using renewable energy sources,such as sunshine and wind in electricity generation has significantly reduced.This has led to higher penetration of renewable energy into the grid.However,both wind and solar energy photovoltaics are unpredictable energies which reduce the reliability and resiliency of the grid.The integration of battery energy storage system in the grid is one of the proficient solutions to the problem.There are numerous grid connected renewable energy based battery projects that have been deployed in different countries around the world for research,development and commercial application.This review paper will discuss some of the projects based on the battery connected wind and solar energy power generation systems that can operate both in grid connected and grid independent modes.The projects discussed in this paper are selected based on the availability of information.The battery energy storage system(BESS)incorporated in each of the project is found to increase the stability and performance of the grid by addressing the mismatch between power generation and the load of the grid created due to intermittent nature of renewable energy sources.
文摘In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,in the process of researching new energy farms,there are some problems when they are integrated into the power system.In order to ensure the stability of new energy power plants,it is necessary to conduct an in-depth analysis of the grid connection technology of new energy farms.In the study,it is necessary to learn about the specific problems of the stability of the grid connection of new energy power plants,and to clarify the specific application of the grid connection technology of new energy power plants from the application principle and advantages of the grid connection technology of new energy power plants.Through simulation experiments,the positive effect of grid connection technology of new energy power plants in improving the stability of power systems was determined.