Superhydrophobic materials have shown tremendous potential in various fields.However,the adhesion,wetting,and pinning of low-surface-tension liquids greatly limit their multifunctional applications.Therefore,the creat...Superhydrophobic materials have shown tremendous potential in various fields.However,the adhesion,wetting,and pinning of low-surface-tension liquids greatly limit their multifunctional applications.Therefore,the creation of superamphiphobic coatings that combine superhydrophobic and superoleophobic properties through a simple preparation strategy is desirable.In this study,we successfully developed an organic-inorganic hybrid superamphiphobic coating on Q235 carbon steel using aluminum oxide nanopar-ticles,organosilanes,and waterborne epoxy resin via a versatile spray-coating technique.The coating ex-hibited high contact angles(>151°)and low sliding angles(<7°)for water and oil liquids,demonstrating excellent superamphiphobic characteristics.Electrochemical tests demonstrated significant improvements in charge transfer resistance and low-frequency modulus for the superamphiphobic coating.The corro-sion potential shifted positively by 590 mV,and the corrosion current density decreased by four orders of magnitude.Additionally,the coating endured 480 h of salt spray and 2400 h of outdoor atmospheric exposure,showcasing superior anti-corrosion capacity.Freezing tests of water droplets at-10°C and-15°C confirmed that the coating significantly prolonged the freezing time with reduced ice adhesion strength.We believe that the designed superamphiphobic coating with integrated functionalities of selfcleaning,anti-corrosion,anti-icing,and anti-liquid-adhesion can provide important solutions for extending the lifespan of materials in marine and industrial environments.展开更多
Pesticide residues treatment is a crucial issue for both agricultural production and environmental protection.In recent years,designing self-cleaning nanoformulations has emerged as a promising strategy for reducing p...Pesticide residues treatment is a crucial issue for both agricultural production and environmental protection.In recent years,designing self-cleaning nanoformulations has emerged as a promising strategy for reducing pesticide residues in a convenient and cost-effective manner.However,traditional physical blending methods of photodegradation reagents with nanocarriers have limitations in terms of pesticide residue degradation efficiency and active ingredient efficacy.Here,a new type of timing self-cleaning nanoherbicide dicamba@mSiO_(2)/ATA/TiO_(2)with a triple structure was fabricated.Dicamba,a widely used herbicide that was attracting increasing concern over its high efficiency and broad spectrum,was selected as the model herbicide and loaded on the mSiO_(2)shell.In the stage of pesticide release,the TiO_(2)and dicamba were separated by the timing-barrier.Therefore,the efficacy of dicamba was not affected by the photocatalyst.During the release process,the ATA layer continuously absorbed the reactive oxygen species(ROS)produced by TiO_(2)and was gradually degraded.Finally,the barrier was destroyed,and the residual dicamba in the carrier was degraded by TiO_(2).Compared with the traditional physical blending method,this triple structure avoided the degradation of active ingredients by photocatalysts during the pesticide release period.The experimental results suggested that this nanoformulation improved the efficacy of the herbicide,and reduced the pesticide residues,providing a new approach for self-cleaning nanopesticides research.展开更多
Although multifunctional aerogels are expected to be used in applications such as portable electronic devices,it is still a great challenge to confer multifunctionality to aerogels while maintaining their inherent mic...Although multifunctional aerogels are expected to be used in applications such as portable electronic devices,it is still a great challenge to confer multifunctionality to aerogels while maintaining their inherent microstructure.Herein,a simple method is proposed to prepare multifunctional NiCo/C aerogels with excellent electromagnetic wave absorption properties,superhydrophobicity,and self-cleaning by water-induced NiCo-MOF self-assembly.Specifically,the impedance matching of the three-dimensional(3D)structure and the interfacial polarization provided by CoNi/C as well as the defect-induced dipole polarization are the primary contributors to the broadband absorption.As a result,the prepared NiCo/C aerogels have a broadband width of 6.22 GHz at 1.9 mm.Due to the presence of hydrophobic functional groups,CoNi/C aerogels improve the stability in humid environments and obtain hydrophobicity with large contact angles>140°.This multifunctional aerogel has promising applications in electromagnetic wave absorption,resistance to water or humid environments.展开更多
Magnesium alloys with superhydrophobicity are constructed by controlling rough surface structure and grafting long hydrophobic alkyl chains. Changes of morphology, phase structure, chemical composition as well as wett...Magnesium alloys with superhydrophobicity are constructed by controlling rough surface structure and grafting long hydrophobic alkyl chains. Changes of morphology, phase structure, chemical composition as well as wettability, corrosion resistance of superhydrophobic magnesium alloy upon immersing in corrosive media are investigated comparatively. Meanwhile, the contaminating particles on as-prepared superhydrophobic surfaces can be taken away easily by rolling water droplets. Therefore, the results show that as-prepared superhydrophobic magnesium alloys exhibit enhanced corrosion resistance and self-healing performance. Finally, anti-corrosion and self-cleaning mechanisms are deduced. It can be concluded that it is an effective strategy of preparing superhydrophobic surfaces for improving the corrosion resistance and selfcleaning performance of magnesium alloys.展开更多
The self-cleaning glass coated with Fe3+-TiO2 photocatalytic thin film was prepared by sol-gel process from the system Ti(OC4H9)4-NH(C2H4OH)2-C2H5OH-H2O containing FeCl3. The microstructure and properties of the f...The self-cleaning glass coated with Fe3+-TiO2 photocatalytic thin film was prepared by sol-gel process from the system Ti(OC4H9)4-NH(C2H4OH)2-C2H5OH-H2O containing FeCl3. The microstructure and properties of the film were studied using differential thermal analysis-thermogravimetry(DTA-TG), X-ray diffration(XRD) and scanning electron microscope(SEM). The transmittance of the self-cleaning glass was measured by using UV-Vis spectrometer. The effects of content of Fe3+ and the thickness of Fe3+-TiO2 thin film on the photocatalytic activity were examined. The results show that the photocatalytic thin films are mainly composed of Fe3O4 and TiO2 particles within 10100 nm. The appropriate amount of Fe3+ is effective for improving the photocatalytic activities of TiO2. The best photocatalytic activity is obtained when the molar ratio of Fe3+ to TiO2 is 0.005 and the glass is coated with 9 layers.展开更多
In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prom...In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation.展开更多
In this study, vanadium doped TiO2 thin films were deposited on glass substrates using a sol-gel dip-coating process. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis spectrophotomete...In this study, vanadium doped TiO2 thin films were deposited on glass substrates using a sol-gel dip-coating process. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis spectrophotometer were used to characterize the structural, chemical and the optical properties of the thin films. The photo-catalytic activities of films were investigated by methylene blue degradation. Water contact angle on the film surfaces was measured by a water contact angle analyzer. The results indicated that vanadium doping had a significant effect on the self-cleaning properties of TiO2 thin films.展开更多
The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.C...The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively.展开更多
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol...A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.展开更多
A superhydrophobic aluminum sheet is fabricated via a hot water immersing process and subsequently surface modification with heptadecafluorodecyltrimethoxy-silane (HTMS). As revealed by the scan electron microscopy ...A superhydrophobic aluminum sheet is fabricated via a hot water immersing process and subsequently surface modification with heptadecafluorodecyltrimethoxy-silane (HTMS). As revealed by the scan electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectrophotometer (FTIR) results, a rough pseudoboehmite film is formed on the aluminum sheet, and HTMS molecules are grafted on the film surface successfully. These two factors make the treated aluminum sheet present superhydrophobicity with a water contact angle larger than 160° and sliding angle less than 5°, and possess a self-cleaning property. Furthermore, the flexible superhydrophobic aluminum sheet could be pasted to a cylinder surface without destroying its superhydrophobicity. At the end, the effect of hot water treatment time on superhydrophobicity is investigated.展开更多
Self-cleaning surfaces have received a great deal of attention recently,both in theoretical studies and commercial applications.The self-cleaning surface of lotus leaf is hydrophobic and rough,showing a micro-and nano...Self-cleaning surfaces have received a great deal of attention recently,both in theoretical studies and commercial applications.The self-cleaning surface of lotus leaf is hydrophobic and rough,showing a micro-and nano-scale morphology.The micro-reliefs of lotus leaf were mimicked using polyvinylidene fluoride(PVDF)film and nano-scale peaks on the top of the micro-reliefs were implemented by the reaction between methyltrichlorosilane and the reactive groups of PVDF film treated by oxygen plasma.A lotus-leaf-like surface of the PVDF film was clearly observed by scanning electronic microscopy(SEM)and atomic force microscope(AFM).Elemental composition analysis by X-ray photoelectron spectroscopy(XPS)revealed that the material of the nanostructure of PVDF film was polymethylsiloxane.The superhydrophobic property of the mimicked self-cleaning surface was validated by the water contact angle and sliding angle on the lotus-leaf-like PVDF film,which were 156.6° and 4°,respectively.In this case,water droplets can easily move across the PVDF film surface,carrying dirt particles away,leaving no contamination.展开更多
A type of self-cleaning pre-coated steel sheet with excellent self-cleaning performance was developed using hydrophilic surface treatment technology. To understand the self-cleaning properties of this pre-coated steel...A type of self-cleaning pre-coated steel sheet with excellent self-cleaning performance was developed using hydrophilic surface treatment technology. To understand the self-cleaning properties of this pre-coated steel sheet in an industrial environment, the Jiangjin natural environmental test station was chosen as the outdoor exposure test to be conducted, and the self-cleaning performance of the steel sheet was studied by measuring the water contact angle, stain resistance factor, color difference, and gloss of the steel sheet during the outdoor exposure test. The water contact angle of the self-cleaning steel sheet quickly decreased from 84° to 29° during the outdoor exposure test, and the steel sheet showed excellent hydrophilic properties, which were beneficial to the spread of rain drops and detrimental to the accumulation of the surface pollutants. After an outdoor exposure of 12 months,the self-cleaning steel sheet had a higher stain resistance and cleaner surface than the comparison sample sheet, demonstrating its excellent self-cleaning properties. Moreover, the color difference and gloss rate of the self-cleaning steel 'sheet were similar to those of the pre-coated steel sheet without hydrophilic surface treatment. Therefore, the hydrophilic surface treatment technology used in this study did not affect the anti-aging property of the self-cleaning steel sheet.展开更多
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou...The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.展开更多
We proposed and compared three methods(filter burnup,single energy burnup,and burnup extremum analysis)to build a high-resolution neutronics model for 238Pu production in high-flux reactors.The filter burnup and singl...We proposed and compared three methods(filter burnup,single energy burnup,and burnup extremum analysis)to build a high-resolution neutronics model for 238Pu production in high-flux reactors.The filter burnup and single energy burnup methods have no theoretical approximation and can achieve a spectrum resolution of up to~1 eV,thereby constructing the importance curve and yield curve of the full energy range.The burnup extreme analysis method combines the importance and yield curves to consider the influence of irradiation time on production efficiency,thereby constructing extreme curves.The three curves,which quantify the transmutation rate of the nuclei in each energy region,are of physical significance because they have similar distributions.A high-resolution neutronics model for ^(238)Pu production was established based on these three curves,and its universality and feasibility were proven.The neutronics model can guide the neutron spectrum optimization and improve the yield of ^(238)Pu by up to 18.81%.The neutronics model revealed the law of nuclei transmutation in all energy regions with high spectrum resolution,thus providing theoretical support for high-flux reactor design and irradiation production of ^(238)Pu.展开更多
In this study,a green and pollution-free multifunctional superhydrophobic paper-based material was prepared using a simple and efficient dipping method.The superhydrophobic paper with a water contact angle(WCA)of 160&...In this study,a green and pollution-free multifunctional superhydrophobic paper-based material was prepared using a simple and efficient dipping method.The superhydrophobic paper with a water contact angle(WCA)of 160°was prepared by attaching micro-and nanocomposite particles,made of stearic acid-modified chitosan and two kinds of titanium dioxide(TiO_(2))nanoparticles of different sizes,to a paper substrate.The surface morphology,elemental composition,and wetting properties of the coatings were examined using scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),and contact angle measurements.Additionally,superhydrophobic coatings exhibited good self-cleaning properties,liquid repellency,ease of repair,and antifouling properties in organic solutions.展开更多
Finishing using TiO2-nanosol treatment of cellulose acetate (CA) fabrics before and after the latter were pretreated with H2O2was undertaken with a view to impart unique properties to CA fabrics, notably, self-cleanin...Finishing using TiO2-nanosol treatment of cellulose acetate (CA) fabrics before and after the latter were pretreated with H2O2was undertaken with a view to impart unique properties to CA fabrics, notably, self-cleaning. Finishing was performed as per the pad-dry-cure method. The finishing treatment involved dispersing the nano-sized TiO2particles in a mixture of water and ethylene glycol (1:1) and application of the dispersions to CA fabrics was made under a variety of conditions. Self cleaning ability of the fabrics is favored by 1) increasing the concentration of TiO2-nanosol to certain limit;2) prolongation of curing time up to 15 second;3) raising the microwave power from 80% to 100% but with the certainty that power of 90% is the most proper. Besides, exposure time-to UV radiation-up to 90 minutes is essential to have remarkable self cleaning properties while keeping other technical properties, namely, strength, roughness and wettability practically unaltered. Incorporation of binder in the finishing pad-bath helps stabilizing the deposition of TiO2 with excellent self-cleaning. Pretreatment of CA fabrics with H2O2 is a pre requisite to guarantee excellent self-cleaning ability. Thermofixation and microwave fixation produces fabrics with very comparable technical properties.展开更多
This article proposes to associate a Deuterium-Deuterium (D-D) fusion reactor with a PWR (fission Pressurized Water Reactor) in a hybrid reactor. Even if the mechanical gain (Q factor) of the D-D fusion reactor is bel...This article proposes to associate a Deuterium-Deuterium (D-D) fusion reactor with a PWR (fission Pressurized Water Reactor) in a hybrid reactor. Even if the mechanical gain (Q factor) of the D-D fusion reactor is below the unity and consequently consumes more energy than it supplies, due to the high energy amplification factor of the PWR fission reactor, the global yield is widely superior to 1. As the energy supplied by the fusion reactor is relatively low and as the neutrons supplied are mainly issued from D-D fusions (at 2.45 MeV), the problems of heat flux and neutrons damage connected with materials, as with D-T fusion reactors are reduced. Of course, there is no need to produce Tritium with this D-D fusion reactor. This type of reactor is able to incinerate any mixture of natural Uranium, natural Thorium and depleted Uranium (waste issued from enrichment plants), with natural Thorium being the best choice. No enriched fuel is needed. So, this type of reactor could constitute a source of energy for several thousands of years because it is about 90 more efficient than a standard fission reactor, such as a PWR or a Candu one, by extracting almost completely the energy from the fertile materials U238 and Th232. For the fission part, PWR technology is mature. For the fusion part, it is based on a reasonable hypothesis done on present Stellarators projects. The working of this reactor is continuous, 24 hours a day. In this paper, it will be targeted a reactor able to provide net electric power of about 1400 MWe, as a big fission power plant.展开更多
This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is consid...This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is considered for a power plant. However, as shown in this article, even if a D-D reactor would be necessarily much bigger than a D-T reactor due to the much weaker fusion reactivity of the D-D fusion compared to the D-T fusion, a D-D reactor size would remain under an acceptable size. Indeed, a D-D power plant would be necessarily large and powerful, i.e. the net electric power would be equal to a minimum of 1.2 GWe and preferably above 10 GWe. A D-D reactor would be less complex than a D-T reactor as it is not necessary to obtain Tritium from the reactor itself. It is proposed the same type of reactor yet proposed by the author in a previous article, i.e. a Stellarator “racetrack” magnetic loop. The working of this reactor is continuous. It is reminded that the Deuterium is relatively abundant on the sea water, and so it constitutes an almost inexhaustible source of energy. Thanks to secondary fusions (D-T and D-He3) which both occur at an appreciable level above 100 keV, plasma can stabilize around such high equilibrium energy (i.e. between 100 and 150 keV). The mechanical gain (Q) of such reactor increases with the internal pipe radius, up to 4.5 m. A radius of 4.5 m permits a mechanical gain (Q) of about 17 which thanks to a modern thermo-dynamical conversion would lead to convert about 21% of the thermal power issued from the D-D reactor in a net electric power of 20 GWe. The goal of the article is to create a physical model of the D-D reactor so as to estimate this one without the need of a simulator and finally to estimate the dimensions, power and yield of such D-D reactor for different net electrical powers. The difficulties of the modeling of such reactor are listed in this article and would certainly be applicable to a future D-He3 reactor, if any.展开更多
Self-cleaning coatings for tunnels can effectively remove dust and stains accumulated over the surface of tunnel linings and their appurtenances due to the closed environment and poor ventilation.This paper systematic...Self-cleaning coatings for tunnels can effectively remove dust and stains accumulated over the surface of tunnel linings and their appurtenances due to the closed environment and poor ventilation.This paper systematically introduces the current research status of self-cleaning coatings for tunnels,focusing on the development of super-hydrophobic self-cleaning coatings,superamphiphobic self-cleaning coatings,exhaust gas degradation coatings,fire retardant coatings,and tunnel de-icing coatings.The advantages and disadvantages of the five functional coatings are then briefly described,and the problems of self-cleaning coatings for tunnels at the present stage are pointed out.Finally,the development direction of self-cleaning coatings for tunnels is proposed to provide a reference for the research and application of self-cleaning coatings for tunnels.展开更多
基金the financial support of the Shandong Provincial Natural Science Foundation(Nos.ZR2022YQ35 and ZR2021LFG004)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021207).
文摘Superhydrophobic materials have shown tremendous potential in various fields.However,the adhesion,wetting,and pinning of low-surface-tension liquids greatly limit their multifunctional applications.Therefore,the creation of superamphiphobic coatings that combine superhydrophobic and superoleophobic properties through a simple preparation strategy is desirable.In this study,we successfully developed an organic-inorganic hybrid superamphiphobic coating on Q235 carbon steel using aluminum oxide nanopar-ticles,organosilanes,and waterborne epoxy resin via a versatile spray-coating technique.The coating ex-hibited high contact angles(>151°)and low sliding angles(<7°)for water and oil liquids,demonstrating excellent superamphiphobic characteristics.Electrochemical tests demonstrated significant improvements in charge transfer resistance and low-frequency modulus for the superamphiphobic coating.The corro-sion potential shifted positively by 590 mV,and the corrosion current density decreased by four orders of magnitude.Additionally,the coating endured 480 h of salt spray and 2400 h of outdoor atmospheric exposure,showcasing superior anti-corrosion capacity.Freezing tests of water droplets at-10°C and-15°C confirmed that the coating significantly prolonged the freezing time with reduced ice adhesion strength.We believe that the designed superamphiphobic coating with integrated functionalities of selfcleaning,anti-corrosion,anti-icing,and anti-liquid-adhesion can provide important solutions for extending the lifespan of materials in marine and industrial environments.
基金the financial support provided by the National Key R&D Program of China(2022YFA1207400)the National Key R&D Program of China(2021YFD1700105)+1 种基金the National Key R&D Program of China(2021YFA0716702)the Program of Introducing Talents of Discipline to Universities of China(111 program,B17019).
文摘Pesticide residues treatment is a crucial issue for both agricultural production and environmental protection.In recent years,designing self-cleaning nanoformulations has emerged as a promising strategy for reducing pesticide residues in a convenient and cost-effective manner.However,traditional physical blending methods of photodegradation reagents with nanocarriers have limitations in terms of pesticide residue degradation efficiency and active ingredient efficacy.Here,a new type of timing self-cleaning nanoherbicide dicamba@mSiO_(2)/ATA/TiO_(2)with a triple structure was fabricated.Dicamba,a widely used herbicide that was attracting increasing concern over its high efficiency and broad spectrum,was selected as the model herbicide and loaded on the mSiO_(2)shell.In the stage of pesticide release,the TiO_(2)and dicamba were separated by the timing-barrier.Therefore,the efficacy of dicamba was not affected by the photocatalyst.During the release process,the ATA layer continuously absorbed the reactive oxygen species(ROS)produced by TiO_(2)and was gradually degraded.Finally,the barrier was destroyed,and the residual dicamba in the carrier was degraded by TiO_(2).Compared with the traditional physical blending method,this triple structure avoided the degradation of active ingredients by photocatalysts during the pesticide release period.The experimental results suggested that this nanoformulation improved the efficacy of the herbicide,and reduced the pesticide residues,providing a new approach for self-cleaning nanopesticides research.
基金financially supported by the National Natural Science Foundation of China (No.51407134, No.52002196)Natural Science Foundation of Shandong Province (No.ZR2019YQ24, No.ZR2020QF084)+2 种基金Taishan Scholars and Young Experts Program of Shandong Province (No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution (Research and Innovation Team of Structural-Functional Polymer Composites)Special Financial of Shandong Province (Structural Design of Highefficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams (No. 37000022P990304116449))
文摘Although multifunctional aerogels are expected to be used in applications such as portable electronic devices,it is still a great challenge to confer multifunctionality to aerogels while maintaining their inherent microstructure.Herein,a simple method is proposed to prepare multifunctional NiCo/C aerogels with excellent electromagnetic wave absorption properties,superhydrophobicity,and self-cleaning by water-induced NiCo-MOF self-assembly.Specifically,the impedance matching of the three-dimensional(3D)structure and the interfacial polarization provided by CoNi/C as well as the defect-induced dipole polarization are the primary contributors to the broadband absorption.As a result,the prepared NiCo/C aerogels have a broadband width of 6.22 GHz at 1.9 mm.Due to the presence of hydrophobic functional groups,CoNi/C aerogels improve the stability in humid environments and obtain hydrophobicity with large contact angles>140°.This multifunctional aerogel has promising applications in electromagnetic wave absorption,resistance to water or humid environments.
基金Funded by the National Natural Science Foundation of China(No.21161012)
文摘Magnesium alloys with superhydrophobicity are constructed by controlling rough surface structure and grafting long hydrophobic alkyl chains. Changes of morphology, phase structure, chemical composition as well as wettability, corrosion resistance of superhydrophobic magnesium alloy upon immersing in corrosive media are investigated comparatively. Meanwhile, the contaminating particles on as-prepared superhydrophobic surfaces can be taken away easily by rolling water droplets. Therefore, the results show that as-prepared superhydrophobic magnesium alloys exhibit enhanced corrosion resistance and self-healing performance. Finally, anti-corrosion and self-cleaning mechanisms are deduced. It can be concluded that it is an effective strategy of preparing superhydrophobic surfaces for improving the corrosion resistance and selfcleaning performance of magnesium alloys.
文摘The self-cleaning glass coated with Fe3+-TiO2 photocatalytic thin film was prepared by sol-gel process from the system Ti(OC4H9)4-NH(C2H4OH)2-C2H5OH-H2O containing FeCl3. The microstructure and properties of the film were studied using differential thermal analysis-thermogravimetry(DTA-TG), X-ray diffration(XRD) and scanning electron microscope(SEM). The transmittance of the self-cleaning glass was measured by using UV-Vis spectrometer. The effects of content of Fe3+ and the thickness of Fe3+-TiO2 thin film on the photocatalytic activity were examined. The results show that the photocatalytic thin films are mainly composed of Fe3O4 and TiO2 particles within 10100 nm. The appropriate amount of Fe3+ is effective for improving the photocatalytic activities of TiO2. The best photocatalytic activity is obtained when the molar ratio of Fe3+ to TiO2 is 0.005 and the glass is coated with 9 layers.
基金the National Natural Science Foundation of China(No.21776319 and No.21476269).
文摘In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation.
文摘In this study, vanadium doped TiO2 thin films were deposited on glass substrates using a sol-gel dip-coating process. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis spectrophotometer were used to characterize the structural, chemical and the optical properties of the thin films. The photo-catalytic activities of films were investigated by methylene blue degradation. Water contact angle on the film surfaces was measured by a water contact angle analyzer. The results indicated that vanadium doping had a significant effect on the self-cleaning properties of TiO2 thin films.
基金partially supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)the Innovation Fund of CNNC(Lingchuang Fund)+1 种基金EP/T000414/1 PREdictive Modeling with QuantIfication of UncERtainty for MultiphasE Systems(PREMIERE)the Leverhulme Centre for Wildfires,Environment,and Society through the Leverhulme Trust(No.RC-2018-023).
文摘The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively.
基金This work was supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010300).
文摘A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.78872129 and 81172082)
文摘A superhydrophobic aluminum sheet is fabricated via a hot water immersing process and subsequently surface modification with heptadecafluorodecyltrimethoxy-silane (HTMS). As revealed by the scan electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectrophotometer (FTIR) results, a rough pseudoboehmite film is formed on the aluminum sheet, and HTMS molecules are grafted on the film surface successfully. These two factors make the treated aluminum sheet present superhydrophobicity with a water contact angle larger than 160° and sliding angle less than 5°, and possess a self-cleaning property. Furthermore, the flexible superhydrophobic aluminum sheet could be pasted to a cylinder surface without destroying its superhydrophobicity. At the end, the effect of hot water treatment time on superhydrophobicity is investigated.
基金Tianjin Municipal Science and Technology Commission,China(No.06YFJZJC14802)
文摘Self-cleaning surfaces have received a great deal of attention recently,both in theoretical studies and commercial applications.The self-cleaning surface of lotus leaf is hydrophobic and rough,showing a micro-and nano-scale morphology.The micro-reliefs of lotus leaf were mimicked using polyvinylidene fluoride(PVDF)film and nano-scale peaks on the top of the micro-reliefs were implemented by the reaction between methyltrichlorosilane and the reactive groups of PVDF film treated by oxygen plasma.A lotus-leaf-like surface of the PVDF film was clearly observed by scanning electronic microscopy(SEM)and atomic force microscope(AFM).Elemental composition analysis by X-ray photoelectron spectroscopy(XPS)revealed that the material of the nanostructure of PVDF film was polymethylsiloxane.The superhydrophobic property of the mimicked self-cleaning surface was validated by the water contact angle and sliding angle on the lotus-leaf-like PVDF film,which were 156.6° and 4°,respectively.In this case,water droplets can easily move across the PVDF film surface,carrying dirt particles away,leaving no contamination.
文摘A type of self-cleaning pre-coated steel sheet with excellent self-cleaning performance was developed using hydrophilic surface treatment technology. To understand the self-cleaning properties of this pre-coated steel sheet in an industrial environment, the Jiangjin natural environmental test station was chosen as the outdoor exposure test to be conducted, and the self-cleaning performance of the steel sheet was studied by measuring the water contact angle, stain resistance factor, color difference, and gloss of the steel sheet during the outdoor exposure test. The water contact angle of the self-cleaning steel sheet quickly decreased from 84° to 29° during the outdoor exposure test, and the steel sheet showed excellent hydrophilic properties, which were beneficial to the spread of rain drops and detrimental to the accumulation of the surface pollutants. After an outdoor exposure of 12 months,the self-cleaning steel sheet had a higher stain resistance and cleaner surface than the comparison sample sheet, demonstrating its excellent self-cleaning properties. Moreover, the color difference and gloss rate of the self-cleaning steel 'sheet were similar to those of the pre-coated steel sheet without hydrophilic surface treatment. Therefore, the hydrophilic surface treatment technology used in this study did not affect the anti-aging property of the self-cleaning steel sheet.
基金supported by the National Natural Science Foundation of China(Nos.12022515 and 11975304)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.Y202063)。
文摘The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.
基金supported by Natural Science Foundation of China (No. 12305190)Lingchuang Research Project of China National Nuclear Corporation (CNNC)the Science and Technology on Reactor System Design Technology Laboratory
文摘We proposed and compared three methods(filter burnup,single energy burnup,and burnup extremum analysis)to build a high-resolution neutronics model for 238Pu production in high-flux reactors.The filter burnup and single energy burnup methods have no theoretical approximation and can achieve a spectrum resolution of up to~1 eV,thereby constructing the importance curve and yield curve of the full energy range.The burnup extreme analysis method combines the importance and yield curves to consider the influence of irradiation time on production efficiency,thereby constructing extreme curves.The three curves,which quantify the transmutation rate of the nuclei in each energy region,are of physical significance because they have similar distributions.A high-resolution neutronics model for ^(238)Pu production was established based on these three curves,and its universality and feasibility were proven.The neutronics model can guide the neutron spectrum optimization and improve the yield of ^(238)Pu by up to 18.81%.The neutronics model revealed the law of nuclei transmutation in all energy regions with high spectrum resolution,thus providing theoretical support for high-flux reactor design and irradiation production of ^(238)Pu.
基金the financial support from the Key Research and Development Project of Shandong Province (2019GHY112040)National Natural Science Foundation of China (22078167)+4 种基金Youth Innovative Team Development Plan of Colleges and Universities in Shandong Province (2019KJC008)Shandong Province Major Innovation Project (2018CXGC1001)Foundation (No. XWZR201901) of the State Key Laboratory of Bio-based Material and Green Papermaking, Qilu University of TechnologyMajor Innovation Project of Qingdao West Coast (2019-27)Shandong Province Key Supporting Areas for Introducing Urgently Needed and Shortage of Talents Project-Key Technology Research and Development and Industrialization of Highly Water-Resistant Biomass-Based Materials。
文摘In this study,a green and pollution-free multifunctional superhydrophobic paper-based material was prepared using a simple and efficient dipping method.The superhydrophobic paper with a water contact angle(WCA)of 160°was prepared by attaching micro-and nanocomposite particles,made of stearic acid-modified chitosan and two kinds of titanium dioxide(TiO_(2))nanoparticles of different sizes,to a paper substrate.The surface morphology,elemental composition,and wetting properties of the coatings were examined using scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),and contact angle measurements.Additionally,superhydrophobic coatings exhibited good self-cleaning properties,liquid repellency,ease of repair,and antifouling properties in organic solutions.
文摘Finishing using TiO2-nanosol treatment of cellulose acetate (CA) fabrics before and after the latter were pretreated with H2O2was undertaken with a view to impart unique properties to CA fabrics, notably, self-cleaning. Finishing was performed as per the pad-dry-cure method. The finishing treatment involved dispersing the nano-sized TiO2particles in a mixture of water and ethylene glycol (1:1) and application of the dispersions to CA fabrics was made under a variety of conditions. Self cleaning ability of the fabrics is favored by 1) increasing the concentration of TiO2-nanosol to certain limit;2) prolongation of curing time up to 15 second;3) raising the microwave power from 80% to 100% but with the certainty that power of 90% is the most proper. Besides, exposure time-to UV radiation-up to 90 minutes is essential to have remarkable self cleaning properties while keeping other technical properties, namely, strength, roughness and wettability practically unaltered. Incorporation of binder in the finishing pad-bath helps stabilizing the deposition of TiO2 with excellent self-cleaning. Pretreatment of CA fabrics with H2O2 is a pre requisite to guarantee excellent self-cleaning ability. Thermofixation and microwave fixation produces fabrics with very comparable technical properties.
文摘This article proposes to associate a Deuterium-Deuterium (D-D) fusion reactor with a PWR (fission Pressurized Water Reactor) in a hybrid reactor. Even if the mechanical gain (Q factor) of the D-D fusion reactor is below the unity and consequently consumes more energy than it supplies, due to the high energy amplification factor of the PWR fission reactor, the global yield is widely superior to 1. As the energy supplied by the fusion reactor is relatively low and as the neutrons supplied are mainly issued from D-D fusions (at 2.45 MeV), the problems of heat flux and neutrons damage connected with materials, as with D-T fusion reactors are reduced. Of course, there is no need to produce Tritium with this D-D fusion reactor. This type of reactor is able to incinerate any mixture of natural Uranium, natural Thorium and depleted Uranium (waste issued from enrichment plants), with natural Thorium being the best choice. No enriched fuel is needed. So, this type of reactor could constitute a source of energy for several thousands of years because it is about 90 more efficient than a standard fission reactor, such as a PWR or a Candu one, by extracting almost completely the energy from the fertile materials U238 and Th232. For the fission part, PWR technology is mature. For the fusion part, it is based on a reasonable hypothesis done on present Stellarators projects. The working of this reactor is continuous, 24 hours a day. In this paper, it will be targeted a reactor able to provide net electric power of about 1400 MWe, as a big fission power plant.
文摘This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is considered for a power plant. However, as shown in this article, even if a D-D reactor would be necessarily much bigger than a D-T reactor due to the much weaker fusion reactivity of the D-D fusion compared to the D-T fusion, a D-D reactor size would remain under an acceptable size. Indeed, a D-D power plant would be necessarily large and powerful, i.e. the net electric power would be equal to a minimum of 1.2 GWe and preferably above 10 GWe. A D-D reactor would be less complex than a D-T reactor as it is not necessary to obtain Tritium from the reactor itself. It is proposed the same type of reactor yet proposed by the author in a previous article, i.e. a Stellarator “racetrack” magnetic loop. The working of this reactor is continuous. It is reminded that the Deuterium is relatively abundant on the sea water, and so it constitutes an almost inexhaustible source of energy. Thanks to secondary fusions (D-T and D-He3) which both occur at an appreciable level above 100 keV, plasma can stabilize around such high equilibrium energy (i.e. between 100 and 150 keV). The mechanical gain (Q) of such reactor increases with the internal pipe radius, up to 4.5 m. A radius of 4.5 m permits a mechanical gain (Q) of about 17 which thanks to a modern thermo-dynamical conversion would lead to convert about 21% of the thermal power issued from the D-D reactor in a net electric power of 20 GWe. The goal of the article is to create a physical model of the D-D reactor so as to estimate this one without the need of a simulator and finally to estimate the dimensions, power and yield of such D-D reactor for different net electrical powers. The difficulties of the modeling of such reactor are listed in this article and would certainly be applicable to a future D-He3 reactor, if any.
基金financially supported by National Key R&D Program of China(2018YFB1600101).
文摘Self-cleaning coatings for tunnels can effectively remove dust and stains accumulated over the surface of tunnel linings and their appurtenances due to the closed environment and poor ventilation.This paper systematically introduces the current research status of self-cleaning coatings for tunnels,focusing on the development of super-hydrophobic self-cleaning coatings,superamphiphobic self-cleaning coatings,exhaust gas degradation coatings,fire retardant coatings,and tunnel de-icing coatings.The advantages and disadvantages of the five functional coatings are then briefly described,and the problems of self-cleaning coatings for tunnels at the present stage are pointed out.Finally,the development direction of self-cleaning coatings for tunnels is proposed to provide a reference for the research and application of self-cleaning coatings for tunnels.