A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the deve...A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.展开更多
Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and sal...Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.展开更多
The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four yea...The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four years and sampled at various depths in a controlled manner. The chemical properties (e.g., degree of carbonation (DOC), pH, electrical conductivity (EC)) and physical properties (e.g., moisture content (MC), liquid limit CLL), plastic limit (PL), plasticity index (PI)) of the samples untreated and treated with the traditional and accelerated carbonated S/S processes were analyzed. Their variations on the depths of the soils were also studied. The result showed that the broad geotechnical properties of the soils, manifested in their PIs, were related to the concentration of the water soluble ions and in particular the free calcium ions. The samples treated with the accelerated carbonation technology (ACT), and the untreated samples contained limited number of free calcium ions in solutions and consequently interacted with waters in a similar way. Compared with the traditional cement-based S/S technology, e.g., treatment with ordinary portland cement (OPC) or EnvirOceM, ACT caused the increase of the PI of the treated soil and made it more stable during long-term weathering. The PI values for the four soils ascended according to the order: the EnvirOceM soil, the OPC soil, the ACT soil, and the untreated soil while their pH and EC values descended according to the same order.展开更多
Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil...Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil.The mechanical behavior of solidified dredged soil(SDS)was investigated using a series of uniaxial compression and splitting tension tests at different XG and JF contents and fiber lengths.The results indicate that on the 28th day,the unconfined compressive strength(UCS)values of SDS samples reached 2.83 MPa and splitting tensile strength(STS)of 0.763 MPa at an XG content of 1.5%.When the JF content was greater than 0.9%,the STS of the SDS samples decreased.This is because that the large fiber content weakened the cementation ability of XG.The addition of JF can significantly increase the strain at peak strength of SDS samples.There is a linear relationship between the UCS and STS of the dredged soils solidified by XG and JF.Microanalysis shows that the strength of SDS samples was improved mainly via the cementation of XG itself and the network structure formed by JF with soil particles.The dredged soil reinforced by XG and JF shows better mechanical performance and has great potential for application.展开更多
基金financially supported by the Science and Technology Commission Foundation of Shanghai(Grant Nos.22DZ1208903,20DZ2251900)the National Natural Science Foundation of China(Grant No.51679134)。
文摘A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.
基金Project(05YFSYSF00300) supported by the Natural Science Foundation of Tianjin
文摘Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.
文摘The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four years and sampled at various depths in a controlled manner. The chemical properties (e.g., degree of carbonation (DOC), pH, electrical conductivity (EC)) and physical properties (e.g., moisture content (MC), liquid limit CLL), plastic limit (PL), plasticity index (PI)) of the samples untreated and treated with the traditional and accelerated carbonated S/S processes were analyzed. Their variations on the depths of the soils were also studied. The result showed that the broad geotechnical properties of the soils, manifested in their PIs, were related to the concentration of the water soluble ions and in particular the free calcium ions. The samples treated with the accelerated carbonation technology (ACT), and the untreated samples contained limited number of free calcium ions in solutions and consequently interacted with waters in a similar way. Compared with the traditional cement-based S/S technology, e.g., treatment with ordinary portland cement (OPC) or EnvirOceM, ACT caused the increase of the PI of the treated soil and made it more stable during long-term weathering. The PI values for the four soils ascended according to the order: the EnvirOceM soil, the OPC soil, the ACT soil, and the untreated soil while their pH and EC values descended according to the same order.
基金The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.51979267 and 52074143)the Major Science and Technology Program of Inner Mongolia,China(Grant No.2021ZD0007).
文摘Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil.The mechanical behavior of solidified dredged soil(SDS)was investigated using a series of uniaxial compression and splitting tension tests at different XG and JF contents and fiber lengths.The results indicate that on the 28th day,the unconfined compressive strength(UCS)values of SDS samples reached 2.83 MPa and splitting tensile strength(STS)of 0.763 MPa at an XG content of 1.5%.When the JF content was greater than 0.9%,the STS of the SDS samples decreased.This is because that the large fiber content weakened the cementation ability of XG.The addition of JF can significantly increase the strain at peak strength of SDS samples.There is a linear relationship between the UCS and STS of the dredged soils solidified by XG and JF.Microanalysis shows that the strength of SDS samples was improved mainly via the cementation of XG itself and the network structure formed by JF with soil particles.The dredged soil reinforced by XG and JF shows better mechanical performance and has great potential for application.