期刊文献+
共找到528篇文章
< 1 2 27 >
每页显示 20 50 100
Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches
1
作者 Ravi Maharjan Ki Hyun Kim +2 位作者 Kyeong Lee Hyo-Kyung Han Seong Hoon Jeong 《Journal of Pharmaceutical Analysis》 CSCD 2024年第11期1645-1660,共16页
To enhance the efficiency of vaccine manufacturing,this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA-lipid nanoparticles(mRNA-LNP).Different mRNA-LNP formulations(n... To enhance the efficiency of vaccine manufacturing,this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA-lipid nanoparticles(mRNA-LNP).Different mRNA-LNP formulations(n¼24)were developed using an I-optimal design,where machine learning tools(XGBoost/Bayesian optimization and self-validated ensemble(SVEM))were used to optimize the process and predict lipid mix ratio.The investigation included material attributes,their respective ratios,and process attributes.The critical responses like particle size(PS),polydispersity index(PDI),Zeta potential,pKa,heat trend cycle,encapsulation efficiency(EE),recovery ratio,and encapsulated mRNA were evaluated.Overall prediction of SVEM(>97%)was comparably better than that of XGBoost/Bayesian optimization(>94%).Moreover,in actual experimental outcomes,SVEM prediction is close to the actual data as confirmed by the experimental PS(94e96 nm)is close to the predicted one(95e97 nm).The other parameters including PDI and EE were also close to the actual experimental data. 展开更多
关键词 Vaccine manufacturing Microfluidic device XGBoost Bayesian optimization Self-validated ensemble model
下载PDF
THE EFFECT OF SAMPLE OPTIMIZATION ON THE ENSEMBLE KALMAN FILTER IN FORECASTING TYPHOON RAMMASUN(2014) 被引量:7
2
作者 LI Ji-hang WAN Qi-lin +1 位作者 GAO Yu-dong XIAO Hui 《Journal of Tropical Meteorology》 SCIE 2018年第4期433-447,共15页
In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ens... In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ensemble Kalman filter(EnKF) for a simulation of the 2014 Super Typhoon Rammasun, which made landfall in southern China in July 2014. Under the premise of sufficient ensemble spread, keeping samples with a good fit to observations and eliminating those with poor fit can affect the performance of En KF. In the sample optimization, states were selected based on the sample spatial correlation between the ensemble state and observations. The method discarded ensemble states that were less representative and, to maintain the overall ensemble size, generated new ensemble states by reproducing them from ensemble states with a good fit by adding random noise. Sample selection was performed based on radar echo data. Results showed that applying En KF with optimized samples improved the estimated track, intensity,precipitation distribution, and inner-core structure of Typhoon Rammasun. Therefore, the authors proposed that distinguishing between samples with good and poor fits is vital for ensemble prediction, suggesting that sample optimization is necessary to the effective use of En KF. 展开更多
关键词 data ASSIMILATION ensemble prediction SAMPLE optimization TYPHOON Rammasun ensemble KALMAN filter
下载PDF
Ensemble-based optimization of hydraulically fractured horizontal well placement in shale gas reservoir through Hough transform parameterization 被引量:3
3
作者 Liang Xue Shao-Hua Gu +2 位作者 Xie-Er Jiang Yue-Tian Liu Chen Yang 《Petroleum Science》 SCIE CAS CSCD 2021年第3期839-851,共13页
Shale gas reservoirs have been successfully developed due to the advancement of the horizontal well drilling and multistage hydraulic fracturing techniques.However,the optimization design of the horizontal well drilli... Shale gas reservoirs have been successfully developed due to the advancement of the horizontal well drilling and multistage hydraulic fracturing techniques.However,the optimization design of the horizontal well drilling,hydraulic fracturing,and operational schedule is a challenging problem.An ensemble-based optimization method(EnOpt)is proposed here to optimize the design of the hydraulically fractured horizontal well in the shale gas reservoir.The objective is to maximize the net present value(NPV)which requires a simulation model to predict the cumulative shale gas production.To accurately describe the geometry of the hydraulic fractures,the embedded discrete fracture modeling method(EDFM)is used to construct the shale gas simulation model.The efects of gas absorption,Knudsen difusion,natural and hydraulic fractures,and gas-water two phase fow are considered in the shale gas production system.To improve the parameter continuity and Gaussianity required by the EnOpt method,the Hough transformation parameterization is used to characterize the horizontal well.The results show that the proposed method can efectively optimize the design parameters of the hydraulically fractured horizontal well,and the NPV can be improved greatly after optimization so that the design parameters can approach to their optimal values. 展开更多
关键词 Shale gas ensemble optimization Embedded discrete fracture model Hough transformation
下载PDF
The Simulation of Five Tropical Cyclones by Sample Optimization of Ensemble Forecasting Based on the Observed Track and Intensity 被引量:2
4
作者 Jihang LI Zhiyan ZHANG +3 位作者 Lu LIU Xubin ZHANG Jingxuan QU and Qilin WAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第10期1763-1777,共15页
The quality of ensemble forecasting is seriously affected by sample quality.In this study,the distributions of ensemble members based on the observed track and intensity of tropical cyclones(TCs)were optimized and the... The quality of ensemble forecasting is seriously affected by sample quality.In this study,the distributions of ensemble members based on the observed track and intensity of tropical cyclones(TCs)were optimized and their influence on the simulation results was analyzed.Simulated and observed tracks and intensities of TCs were compared and these two indicators were combined and weighted to score the sample.Samples with higher scores were retained and samples with lower scores were eliminated to improve the overall quality of the ensemble forecast.For each sample,the track score and intensity score were added as the final score of the sample with weight proportions of 10 to 0,9 to 1,8 to 2,7 to 3,6 to 4,5 to 5.These were named as“tr”,“91”,“82”,“73”,“64”,and“55”,respectively.The WRF model was used to simulate five tropical cyclones in the northwestern Pacific to test the ability of this scheme to improve the forecast track and intensity of these cyclones.The results show that the sample optimization effectively reduced the track and intensity error,“55”usually had better performance on the short-term intensity prediction,and“tr”had better performance in short-term track prediction.From the overall performance of the track and intensity simulation,“91”was the best and most stable among all sample optimization schemes.These results may provide some guidance for optimizing operational ensemble forecasting of TCs. 展开更多
关键词 tropical cyclones ensemble forecast sample optimization observed track and intensity
下载PDF
SAMPLE OPTIMIZATION OF ENSEMBLE FORECAST TO SIMULATE TROPICAL STORMS(MERBOK, MAWAR, AND GUCHOL) USING THE OBSERVED TRACK 被引量:1
5
作者 LI Ji-hang GAO Yu-dong +1 位作者 WAN Qi-lin ZHANG Xu-bin 《Journal of Tropical Meteorology》 SCIE 2020年第1期14-26,共13页
Nowadays,ensemble forecasting is popular in numerical weather prediction(NWP).However,an ensemble may not produce a perfect Gaussian probability distribution due to limited members and the fact that some members signi... Nowadays,ensemble forecasting is popular in numerical weather prediction(NWP).However,an ensemble may not produce a perfect Gaussian probability distribution due to limited members and the fact that some members significantly deviate from the true atmospheric state.Therefore,event samples with small probabilities may downgrade the accuracy of an ensemble forecast.In this study,the evolution of tropical storms(weak typhoon)was investigated and an observed tropical storm track was used to limit the probability distribution of samples.The ensemble forecast method used pure observation data instead of assimilated data.In addition,the prediction results for three tropical storm systems,Merbok,Mawar,and Guchol,showed that track and intensity errors could be reduced through sample optimization.In the research,the vertical structures of these tropical storms were compared,and the existence of different thermal structures was discovered.One possible reason for structural differences is sample optimization,and it may affect storm intensity and track. 展开更多
关键词 ensemble forecast sample optimization tropical storm observed track
下载PDF
Multi-model ensemble forecasting of 10-m wind speed over eastern China based on machine learning optimization 被引量:1
6
作者 Ting Lei Jingjing Min +3 位作者 Chao Han Chen Qi Chenxi Jin Shuanglin Li 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第5期95-101,共7页
风对人类活动和电力运行有重大影响,准确预报短期风速具有深远的社会和经济意义.基于中国东部100个站点,本研究首先评估了5个业务模式对10米风速的预报能力,日本气象厅JMA模式在减少预报误差方面表现最好.进一步,利用5种数值模式和多种... 风对人类活动和电力运行有重大影响,准确预报短期风速具有深远的社会和经济意义.基于中国东部100个站点,本研究首先评估了5个业务模式对10米风速的预报能力,日本气象厅JMA模式在减少预报误差方面表现最好.进一步,利用5种数值模式和多种机器学习方法,将动力和统计相结合,对每个站点分别进行了特征工程和机器学习算法优选,建立了10米风速多模式集成预报模型。针对24至96小时预报时长,将该方法的预报性能与基于岭回归的多模式集成和JMA单模式进行比较.结果表明,基于机器学习优选的多模型集成方法可以将JMA模式的预报误差降低39%以上,预报效果的提升在11月最明显.此外,该方法优于基于岭回归的多模式集成方法. 展开更多
关键词 风速 机器学习优选 集成预报 岭回归
下载PDF
Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model
7
作者 Shu-Yi Du Xiang-Guo Zhao +4 位作者 Chi-Yu Xie Jing-Wei Zhu Jiu-Long Wang Jiao-Sheng Yang Hong-Qing Song 《Petroleum Science》 SCIE EI CSCD 2023年第5期2951-2966,共16页
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic... Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints. 展开更多
关键词 Production optimization Random forest The Bayesian algorithm ensemble learning Particle swarm optimization
下载PDF
Evolutionary Algorithm with Ensemble Classifier Surrogate Model for Expensive Multiobjective Optimization
8
作者 LAN Tian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期76-87,共12页
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).... For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms. 展开更多
关键词 multiobjective evolutionary algorithm expensive multiobjective optimization ensemble classifier surrogate model
下载PDF
Optimization Ensemble Weights Model for Wind Forecasting System
9
作者 Amel Ali Alhussan El-Sayed M.El-kenawy +3 位作者 Hussah Nasser AlEisa M.El-SAID Sayed A.Ward Doaa Sami Khafaga 《Computers, Materials & Continua》 SCIE EI 2022年第11期2619-2635,共17页
Effective technology for wind direction forecasting can be realized using the recent advances in machine learning.Consequently,the stability and safety of power systems are expected to be significantly improved.Howeve... Effective technology for wind direction forecasting can be realized using the recent advances in machine learning.Consequently,the stability and safety of power systems are expected to be significantly improved.However,the unstable and unpredictable qualities of the wind predict the wind direction a challenging problem.This paper proposes a practical forecasting approach based on the weighted ensemble of machine learning models.This weighted ensemble is optimized using a whale optimization algorithm guided by particle swarm optimization(PSO-Guided WOA).The proposed optimized weighted ensemble predicts the wind direction given a set of input features.The conducted experiments employed the wind power forecasting dataset,freely available on Kaggle and developed to predict the regular power generation at seven wind farms over forty-eight hours.The recorded results of the conducted experiments emphasize the effectiveness of the proposed ensemble in achieving accurate predictions of the wind direction.In addition,a comparison is established between the proposed optimized ensemble and other competing optimized ensembles to prove its superiority.Moreover,statistical analysis using one-way analysis of variance(ANOVA)and Wilcoxon’s rank-sum are provided based on the recorded results to confirm the excellent accuracy achieved by the proposed optimized weighted ensemble. 展开更多
关键词 Guided Whale optimization Algorithm(Guided WOA) forecasting machine learning weighted ensemble model wind direction
下载PDF
Improved Ant Colony Optimization and Machine Learning Based Ensemble Intrusion Detection Model
10
作者 S.Vanitha P.Balasubramanie 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期849-864,共16页
Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification... Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification of anomalies in IoT infrastructure is a growing problem in the IoT domain.Machine Learning Based Ensemble Intrusion Detection(MLEID)method is applied in order to resolve the drawback by minimizing malicious actions in related botnet attacks on Message Queue Telemetry Transport(MQTT)and Hyper-Text Transfer Proto-col(HTTP)protocols.The proposed work has two significant contributions which are a selection of features and detection of attacks.New features are chosen from Improved Ant Colony Optimization(IACO)in the feature selection,and then the detection of attacks is carried out based on a combination of their possible proper-ties.The IACO approach is focused on defining the attacker’s important features against HTTP and MQTT.In the IACO algorithm,the constant factor is calculated against HTTP and MQTT based on the mean function for each element.Attack detection,the performance of several machine learning models are Distance Deci-sion Tree(DDT),Adaptive Neuro-Fuzzy Inference System(ANFIS)and Mahala-nobis Distance Support Vector Machine(MDSVM)were compared with predicting accurate attacks on the IoT network.The outcomes of these classifiers are combined into the ensemble model.The proposed MLEID strategy has effec-tively established malicious incidents.The UNSW-NB15 dataset is used to test the MLEID technique using data from simulated IoT sensors.Besides,the pro-posed MLEID technique has a greater detection rate and an inferior rate of false-positive compared to other conventional techniques. 展开更多
关键词 Network intrusion detection system(NIDS) internet of things(IOT) ensemble learning statisticalflow features BOTNET ensemble technique improved ant colony optimization(IACO) feature selection
下载PDF
An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique
11
作者 施彦 黄聪明 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第4期310-314,共5页
An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), whic... An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases. 展开更多
关键词 机器学习 进化计算 粒子群优化算法 系综技术
下载PDF
Ensemble Forecasts of Tropical Cyclone Track with Orthogonal Conditional Nonlinear Optimal Perturbations 被引量:13
12
作者 Zhenhua HUO Wansuo DUAN Feifan ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第2期231-247,共17页
This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–Nati... This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model). The results show that the ensemble forecast members generated by the orthogonal CNOPs present large spreads but tend to be located on the two sides of real tropical cyclone(TC) tracks and have good agreements between ensemble spreads and ensemble-mean forecast errors for TC tracks. Subsequently, these members reflect more reasonable forecast uncertainties and enhance the orthogonal CNOPs–based ensemble-mean forecasts to obtain higher skill for TC tracks than the orthogonal SVs(singular vectors)–, BVs(bred vectors)– and RPs(random perturbations)–based ones. The results indicate that orthogonal CNOPs of smaller magnitudes should be adopted to construct the initial ensemble perturbations for short lead–time forecasts, but those of larger magnitudes should be used for longer lead–time forecasts due to the effects of nonlinearities. The performance of the orthogonal CNOPs–based ensemble-mean forecasts is case-dependent,which encourages evaluating statistically the forecast skill with more TC cases. Finally, the results show that the ensemble forecasts with only initial perturbations in this work do not increase the forecast skill of TC intensity, which may be related with both the coarse model horizontal resolution and the model error. 展开更多
关键词 ensemble FORECAST initial PERTURBATION CONDITIONAL nonlinear optimal PERTURBATION TROPICAL CYCLONE
下载PDF
Assimilating the along-track sea level anomaly into the regional ocean modeling system using the ensemble optimal interpolation 被引量:4
13
作者 LYU Guokun WANG Hui +3 位作者 ZHU Jiang WANG Dakui XIE Jiping LIU Guimei 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第7期72-82,共11页
The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resol... The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resolving system of the South China Sea (SCS). Background errors are derived from a running seasonal ensemble to account for the seasonal variability within the SCS. A fifth-order localization function with a 250 km localization radius is chosen to reduce the negative effects of sampling errors. The data assimilation system is tested from January 2004 to December 2006. The results show that the root mean square deviation (RMSD) of the sea level anomaly decreased from 10.57 to 6.70 cm, which represents a 36.6% reduction of error. The data assimilation reduces error for temperature within the upper 800 m and for salinity within the upper 200 m, although error degrades slightly at deeper depths. Surface currents are in better agreement with trajectories of surface drifters after data assimilation. The variance of sea level improves significantly in terms of both the amplitude and position of the strong and weak variance regions after assimilating TSLA. Results with AGE error (AGE) perform better than no AGE error (NoAGE) when considering the improvements of the temperature and the salinity. Furthermore, reasons for the extremely strong variability in the northern SCS in high resolution models are investigated. The results demonstrate that the strong variability of sea level in the high resolution model is caused by an extremely strong Kuroshio intrusion. Therefore, it is demonstrated that it is necessary to assimilate the TSLA in order to better simulate the SCS with high resolution models. 展开更多
关键词 ensemble optimal interpolation regional ocean modeling system along-track sea level anomaly South China Sea variability
下载PDF
5G Resource Allocation Using Feature Selection and Greylag Goose Optimization Algorithm
14
作者 Amel Ali Alhussan S.K.Towfek 《Computers, Materials & Continua》 SCIE EI 2024年第7期1179-1201,共23页
In the contemporary world of highly efficient technological development,fifth-generation technology(5G)is seen as a vital step forward with theoretical maximum download speeds of up to twenty gigabits per second(Gbps)... In the contemporary world of highly efficient technological development,fifth-generation technology(5G)is seen as a vital step forward with theoretical maximum download speeds of up to twenty gigabits per second(Gbps).As far as the current implementations are concerned,they are at the level of slightly below 1 Gbps,but this allowed a great leap forward from fourth generation technology(4G),as well as enabling significantly reduced latency,making 5G an absolute necessity for applications such as gaming,virtual conferencing,and other interactive electronic processes.Prospects of this change are not limited to connectivity alone;it urges operators to refine their business strategies and offers users better and improved digital solutions.An essential factor is optimization and the application of artificial intelligence throughout the general arrangement of intricate and detailed 5G lines.Integrating Binary Greylag Goose Optimization(bGGO)to achieve a significant reduction in the feature set while maintaining or improving model performance,leading to more efficient and effective 5G network management,and Greylag Goose Optimization(GGO)increases the efficiency of the machine learningmodels.Thus,the model performs and yields more accurate results.This work proposes a new method to schedule the resources in the next generation,5G,based on a feature selection using GGO and a regression model that is an ensemble of K-Nearest Neighbors(KNN),Gradient Boosting,and Extra Trees algorithms.The ensemble model shows better prediction performance with the coefficient of determination R squared value equal to.99348.The proposed framework is supported by several Statistical analyses,such as theWilcoxon signed-rank test.Some of the benefits of this study are the introduction of new efficient optimization algorithms,the selection of features and more reliable ensemble models which improve the efficiency of 5G technology. 展开更多
关键词 optimization ensemble learning 5G technology artificial intelligence greylag goose optimization ANOVA test
下载PDF
Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures
15
作者 Xue-Qin Li Lu-Kai Song 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期665-684,共20页
Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ... Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures. 展开更多
关键词 Random forest reliability-based design optimization ensemble learning machine learning
下载PDF
Optimized Ensemble Algorithm for Predicting Metamaterial Antenna Parameters 被引量:4
16
作者 El-Sayed M.El-kenawy Abdelhameed Ibrahim +3 位作者 Seyedali Mirjalili Yu-Dong Zhang Shaima Elnazer Rokaia M.Zaki 《Computers, Materials & Continua》 SCIE EI 2022年第6期4989-5003,共15页
Metamaterial Antenna is a subclass of antennas that makes use of metamaterial to improve performance.Metamaterial antennas can overcome the bandwidth constraint associated with tiny antennas.Machine learning is receiv... Metamaterial Antenna is a subclass of antennas that makes use of metamaterial to improve performance.Metamaterial antennas can overcome the bandwidth constraint associated with tiny antennas.Machine learning is receiving a lot of interest in optimizing solutions in a variety of areas.Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today’s technology.The accuracy of the forecast is mostly determined by the model used.The purpose of this article is to provide an optimal ensemble model for predicting the bandwidth and gain of the Metamaterial Antenna.Support Vector Machines(SVM),Random Forest,K-Neighbors Regressor,and Decision Tree Regressor were utilized as the basic models.The Adaptive Dynamic Polar Rose Guided Whale Optimization method,named AD-PRS-Guided WOA,was used to pick the optimal features from the datasets.The suggested model is compared to models based on five variables and to the average ensemble model.The findings indicate that the presented model using Random Forest results in a Root Mean Squared Error(RMSE)of(0.0102)for bandwidth and RMSE of(0.0891)for gain.This is superior to other models and can accurately predict antenna bandwidth and gain. 展开更多
关键词 Metamaterial antenna machine learning ensemble model feature selection guided whale optimization support vector machines
下载PDF
Metaheuristic-Driven Two-Stage Ensemble Deep Learning for Lung/Colon Cancer Classification
17
作者 Pouyan Razmjouei Elaheh Moharamkhani +2 位作者 Mohamad Hasanvand Maryam Daneshfar Mohammad Shokouhifar 《Computers, Materials & Continua》 SCIE EI 2024年第9期3855-3880,共26页
This study investigates the application of deep learning,ensemble learning,metaheuristic optimization,and image processing techniques for detecting lung and colon cancers,aiming to enhance treatment efficacy and impro... This study investigates the application of deep learning,ensemble learning,metaheuristic optimization,and image processing techniques for detecting lung and colon cancers,aiming to enhance treatment efficacy and improve survival rates.We introduce a metaheuristic-driven two-stage ensemble deep learning model for efficient lung/colon cancer classification.The diagnosis of lung and colon cancers is attempted using several unique indicators by different versions of deep Convolutional Neural Networks(CNNs)in feature extraction and model constructions,and utilizing the power of various Machine Learning(ML)algorithms for final classification.Specifically,we consider different scenarios consisting of two-class colon cancer,three-class lung cancer,and fiveclass combined lung/colon cancer to conduct feature extraction using four CNNs.These extracted features are then integrated to create a comprehensive feature set.In the next step,the optimization of the feature selection is conducted using a metaheuristic algorithm based on the Electric Eel Foraging Optimization(EEFO).This optimized feature subset is subsequently employed in various ML algorithms to determine the most effective ones through a rigorous evaluation process.The top-performing algorithms are refined using the High-Performance Filter(HPF)and integrated into an ensemble learning framework employing weighted averaging.Our findings indicate that the proposed ensemble learning model significantly surpasses existing methods in classification accuracy across all datasets,achieving accuracies of 99.85%for the two-class,98.70%for the three-class,and 98.96%for the five-class datasets. 展开更多
关键词 Lung cancer colon cancer feature selection electric eel foraging optimization deep learning ensemble learning
下载PDF
An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction
18
作者 Duy Quang Tran Huy Q.Tran Minh Van Nguyen 《Computers, Materials & Continua》 SCIE EI 2024年第3期3585-3602,共18页
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ... With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning. 展开更多
关键词 ensemble empirical mode decomposition traffic volume prediction long short-term memory optimal hyperparameters deep learning
下载PDF
Optimized Two-Level Ensemble Model for Predicting the Parameters of Metamaterial Antenna 被引量:2
19
作者 Abdelaziz A.Abdelhamid Sultan R.Alotaibi 《Computers, Materials & Continua》 SCIE EI 2022年第10期917-933,共17页
Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation to... Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation tools.In this paper,we propose a new approach for predicting the bandwidth of metamaterial antenna using a novel ensemble model.The proposed ensemble model is composed of two levels of regression models.The first level consists of three strong models namely,random forest,support vector regression,and light gradient boosting machine.Whereas the second level is based on the ElasticNet regression model,which receives the prediction results from the models in the first level for refinement and producing the final optimal result.To achieve the best performance of these regression models,the advanced squirrel search optimization algorithm(ASSOA)is utilized to search for the optimal set of hyper-parameters of each model.Experimental results show that the proposed two-level ensemble model could achieve a robust prediction of the bandwidth of metamaterial antenna when compared with the recently published ensemble models based on the same publicly available benchmark dataset.The findings indicate that the proposed approach results in root mean square error(RMSE)of(0.013),mean absolute error(MAE)of(0.004),and mean bias error(MBE)of(0.0017).These results are superior to the other competing ensemble models and can predict the antenna bandwidth more accurately. 展开更多
关键词 ensemble model parameter prediction metamaterial antenna machine learning model optimization
下载PDF
Ensemble Deep Learning Based Air Pollution Prediction for Sustainable Smart Cities
20
作者 Maha Farouk Sabir Mahmoud Ragab +2 位作者 Adil O.Khadidos Khaled H.Alyoubi Alaa O.Khadidos 《Computer Systems Science & Engineering》 2024年第3期627-643,共17页
Big data and information and communication technologies can be important to the effectiveness of smart cities.Based on the maximal attention on smart city sustainability,developing data-driven smart cities is newly ob... Big data and information and communication technologies can be important to the effectiveness of smart cities.Based on the maximal attention on smart city sustainability,developing data-driven smart cities is newly obtained attention as a vital technology for addressing sustainability problems.Real-time monitoring of pollution allows local authorities to analyze the present traffic condition of cities and make decisions.Relating to air pollution occurs a main environmental problem in smart city environments.The effect of the deep learning(DL)approach quickly increased and penetrated almost every domain,comprising air pollution forecast.Therefore,this article develops a new Coot Optimization Algorithm with an Ensemble Deep Learning based Air Pollution Prediction(COAEDL-APP)system for Sustainable Smart Cities.The projected COAEDL-APP algorithm accurately forecasts the presence of air quality in the sustainable smart city environment.To achieve this,the COAEDL-APP technique initially performs a linear scaling normalization(LSN)approach to pre-process the input data.For air quality prediction,an ensemble of three DL models has been involved,namely autoencoder(AE),long short-term memory(LSTM),and deep belief network(DBN).Furthermore,the COA-based hyperparameter tuning procedure can be designed to adjust the hyperparameter values of the DL models.The simulation outcome of the COAEDL-APP algorithm was tested on the air quality database,and the outcomes stated the improved performance of the COAEDL-APP algorithm over other existing systems with maximum accuracy of 98.34%. 展开更多
关键词 SUSTAINABILITY smart cities air pollution prediction ensemble learning coot optimization algorithm
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部