Self-assembled nanostructures of lipids and nanoparticles hold great promise for applications in such fields as nanomedicine. This paper uses the self-consistent field theory to investigate the self-assembly behavior ...Self-assembled nanostructures of lipids and nanoparticles hold great promise for applications in such fields as nanomedicine. This paper uses the self-consistent field theory to investigate the self-assembly behavior of lipid molecules and nanoparticles with different shapes in an aqueous solution. It is found that the lipid molecules can form monolayered and bilayered nanostructures around the nanopartieles with different shapes (e.g., triangular, square, hexagonal and octangular). With decreasing the size of nanoparticles or increasing the number of polygon edges, the shape of lipid layers will approach an approximately spherical shape. These findings may help to predict and design novel drug delivery nanocarriers.展开更多
The self-consistent Hartree-Fock equation for the He atom is solved using the pseudospectral method. The Feshbach- type autoionization resonance parameters for doubly excited 2s2, 3s2, and 4s2 IS states of He have bee...The self-consistent Hartree-Fock equation for the He atom is solved using the pseudospectral method. The Feshbach- type autoionization resonance parameters for doubly excited 2s2, 3s2, and 4s2 IS states of He have been determined by adding a complex absorbing potential to the Hamiltonian. The Riss-Meyer iterative and Pad6 extrapolation methods are applied to obtain reliable values for the autoionization resonance parameters, which are compared to previous results in the literature.展开更多
Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depen...Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.展开更多
The adsorption of flexible polyelectrolyte (PE) with the smeared charge distribution onto an oppositely charged sphere immersed in a PE solution is studied numerically with the continuum self-consistent field theory...The adsorption of flexible polyelectrolyte (PE) with the smeared charge distribution onto an oppositely charged sphere immersed in a PE solution is studied numerically with the continuum self-consistent field theory. The power law scaling relationships between the boundary layer thickness and the surface charge density and the charge fraction of PE chains revealed in the study are in good agreement with the existing analytical result. The curvature effect on the degree of charge compensation of the total amount of charges on the adsorbed PE chains over the surface charges is examined, and a clear understanding of it based on the dependences of the degree of charge compensation on the surface charge density and the charge fraction of PE chains is established.展开更多
The self-consistent field theory(SCFT)was employed to numerically study the interaction and interpenetration between two opposing weak polyelectrolyte(PE)brushes formed by grafting weak PE chains onto the surfaces of ...The self-consistent field theory(SCFT)was employed to numerically study the interaction and interpenetration between two opposing weak polyelectrolyte(PE)brushes formed by grafting weak PE chains onto the surfaces of two long and parallel columns with rectangularshaped cross-section immersed in a salty aqueous solution.The dependences of the brush heights and the average degree of ionization on various system parameters were also investigated.When the brush separation is relatively large compared with the unperturbed brush height,the degree of interpenetration between the two opposing PE brushes was found to increase with increasing grafting density and bulk degree of ionization.The degree of interpenetration also increases with the bulk salt concentration in the osmotic brush regime.Numerical results further revealed that,at a brush separation comparable to the unperturbed brush height,the degree of interpenetration does not increase further with increasing bulk degree of ionization,bulk salt concentration in the osmotic regime and grafting density.The saturation of the degree of interpenetration with these system parameters indicates that the grafted PE chains in the gap between the two columns retract and tilt in order to reduce the unfavorable electrostatic and steric repulsions between the two opposing PE brushes.Based on salt ion concentrations at the midpoint between the two opposing brushes,a quantitative criterion in terms of the unperturbed brush height and Debye screening length was established to determine the threshold value of the brush separation beyond which they are truly independent from each other.展开更多
We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implemen...We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.展开更多
The morphological changes of ABA amphiphilic triblock copolymer micelles in dilute solution were systematically studied by tuning the solvent property using self-consistent field simulation. The solvent property was t...The morphological changes of ABA amphiphilic triblock copolymer micelles in dilute solution were systematically studied by tuning the solvent property using self-consistent field simulation. The solvent property was tuned by changing the Flory-Huggins interaction parameters between each type of blocks and solvent, respectively. The simulation results show that by changing the solvent properties, a series of micelle morphologies such as vesicle, cage-like, ring-shaped, rod-like and spherical micelle morphologies can be obtained. Variations of the free energy of the solution system and the surface area of micelles with the Flory-Huggins interaction parameters were calculated to better understand the effect of solvent property on micelle morphologies. In addition, a phase diagram showing the morphological changes of micelles with the Flory-Huggins interaction parameters is provided.展开更多
The self-consistent field theory has been employed to numerically study the response of bi-disperse flexible polyelectrolyte (PE) brushes grafted on an electrode to electric fields generated by opposite surface char...The self-consistent field theory has been employed to numerically study the response of bi-disperse flexible polyelectrolyte (PE) brushes grafted on an electrode to electric fields generated by opposite surface charges on the PE-grafted electrode and a second parallel electrode. The numerical study reveals that, under a positive external electric field, the shorter and negatively charged PE chains are more responsive than the longer PE chains in terms of the relative changes in their respective brush heights. Whereas under a negative external electric field, the opposite was observed. The total electric force on the grafted PE chains was calculated and it was found that, under a positive external electric field, the magnitude of the total electric force acting on one shorter PE chain is larger than that on one longer PE chain, or vice versa. The underlying mechanism was unraveled through analyzing the total electric field across the two oppositely charged electrodes.展开更多
Self-consistent field theory(SCFT), as a state-of-the-art technique for studying the self-assembly of block copolymers, is attracting continuous efforts to improve its accuracy and efficiency. Here we present a four...Self-consistent field theory(SCFT), as a state-of-the-art technique for studying the self-assembly of block copolymers, is attracting continuous efforts to improve its accuracy and efficiency. Here we present a fourth-order exponential time differencing Runge-Kutta algorithm(ETDRK4) to solve the modified diffusion equation(MDE) which is the most time-consuming part of a SCFT calculation. By making a careful comparison with currently most efficient and popular algorithms, we demonstrate that the ETDRK4 algorithm significantly reduces the number of chain contour steps in solving the MDE, resulting in a boost of the overall computation efficiency, while it shares the same spatial accuracy with other algorithms. In addition, to demonstrate the power of our ETDRK4 algorithm, we apply it to compute the phase boundaries of the bicontinuous gyroid phase in the strong segregation regime and to verify the existence of the triple point of the O70 phase, the lamellar phase and the cylindrical phase.展开更多
ABCA tetrablock copolymers offer new opportunities for design of materials with novel structures. Using real-space self- consistent field theory and simulation, we systematically examined the self-assembly behavior of...ABCA tetrablock copolymers offer new opportunities for design of materials with novel structures. Using real-space self- consistent field theory and simulation, we systematically examined the self-assembly behavior of linear ABCA tetrablock copolymers in a 2D space. The simulation was carried out under conditions of symmetrical compositions and interactions. We focus on the influence of chain length ratio of block A and interactions between block A and other blocks B and C on the self-assembly behavior of the copolymer system. The simulation results show that most of the structures self-assembled by the ABCA tetrablock copolymers are centrosymmetric, such as diblock-like lameUa phase, two kinds of lameUae with beads at interface, two kinds of hierarchical lamella phase, hexagonal honeycomb-like phase, lamella phase with mixed BC and hexagonal spheres with mixed BC. Furthermore, we find that a novel noncentrosymmetric Janus spheres can be obtained when the interaction between blocks B and C is strong, whereas a noncentrosymmetric lamella phase was obtained at weak interaction between blocks B and C. Phase diagrams for the ABCA tetrablock copolymers with different interaction strength between blocks B and C are constructed by comparing free energies of candidate ordered structures. In addition, studies on the metastable behavior of the system reveal that enthalpy plays an important role in the metastable behavior of the ABCA tetrablock copolymer system. Our work can provide useful guide for structure control of such kind of tetrablock copolymers in experiments.展开更多
This review article addresses the widely used self-consistent field theory(SCFT)in interacting polymer systems.The theoretical framework and numerical method of solving the self-consistent equations are presented.In t...This review article addresses the widely used self-consistent field theory(SCFT)in interacting polymer systems.The theoretical framework and numerical method of solving the self-consistent equations are presented.In this paper,different structures of polymer can be considered,such as homopolymer,block copolymer,polydisperse polymer and charged polymer.Several systems,micro/macro phase separation,interface,self-assembly,are presented as examples to demonstrate its applications in details.Besides,the fluctuation effects are considered.The first order is Gaussian fluctuation theory,which can be used to determine the stability of the mean-field solution and predict the kinetics of unstable structure.The derivation and applications of Gaussian fluctuation theory are presented as well.展开更多
The interaction force between likely charged particles/surfaces is usually repulsive due to the Coulomb interaction.However,the counterintuitive like-charge attraction in electrolytes has been frequently observed in e...The interaction force between likely charged particles/surfaces is usually repulsive due to the Coulomb interaction.However,the counterintuitive like-charge attraction in electrolytes has been frequently observed in experiments,which has been theoretically debated for a long time.It is widely known that the mean field Poisson-Boltzmann theory cannot explain and predict this anomalous feature since it ignores many-body properties.In this paper,we develop efficient algorithm and perform the force calculation between two interfaces using a set of self-consistent equations which properly takes into account the electrostatic correlation and the dielectric-boundary effects.By solving the equations and calculating the pressure with the Debye-charging process,we show that the self-consistent equations could be used to study the attraction between like-charge surfaces from weak-coupling to mediate-coupling regimes,and that the attraction is due to the electrostatics-driven entropic force which is significantly enhanced by the dielectric depletion of mobile ions.A systematic investigation shows that the interaction forces can be tuned by material permittivity,ionic size and valence,and salt concentration,and that the like-charge attraction exists only for specific regime of these parameters.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo...Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.展开更多
Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a...Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.展开更多
The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatia...The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.展开更多
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re...Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.展开更多
The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.C...The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively.展开更多
Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that...Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects.展开更多
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost...The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.展开更多
基金supported by the National Natural Science Foundation of China(10972121)the Ministry of Education (SRFDP 20090002110047)the 973 Program of MOST(2012CB934101)
文摘Self-assembled nanostructures of lipids and nanoparticles hold great promise for applications in such fields as nanomedicine. This paper uses the self-consistent field theory to investigate the self-assembly behavior of lipid molecules and nanoparticles with different shapes in an aqueous solution. It is found that the lipid molecules can form monolayered and bilayered nanostructures around the nanopartieles with different shapes (e.g., triangular, square, hexagonal and octangular). With decreasing the size of nanoparticles or increasing the number of polygon edges, the shape of lipid layers will approach an approximately spherical shape. These findings may help to predict and design novel drug delivery nanocarriers.
文摘The self-consistent Hartree-Fock equation for the He atom is solved using the pseudospectral method. The Feshbach- type autoionization resonance parameters for doubly excited 2s2, 3s2, and 4s2 IS states of He have been determined by adding a complex absorbing potential to the Hamiltonian. The Riss-Meyer iterative and Pad6 extrapolation methods are applied to obtain reliable values for the autoionization resonance parameters, which are compared to previous results in the literature.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11421101 and 21274005)the Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.
基金Project supports by the National Natural Science Foundation of China(Grant Nos.21074062 and 11174163)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of Chinathe Scientific Research Fund of Zhejiang Provincial Educational Department,China(Grant No.Y200907455)
文摘The adsorption of flexible polyelectrolyte (PE) with the smeared charge distribution onto an oppositely charged sphere immersed in a PE solution is studied numerically with the continuum self-consistent field theory. The power law scaling relationships between the boundary layer thickness and the surface charge density and the charge fraction of PE chains revealed in the study are in good agreement with the existing analytical result. The curvature effect on the degree of charge compensation of the total amount of charges on the adsorbed PE chains over the surface charges is examined, and a clear understanding of it based on the dependences of the degree of charge compensation on the surface charge density and the charge fraction of PE chains is established.
基金supported by the National Natural Science Foundation of China(No.21774067)The Foundation of Key Laboratory of Flexible Electronics of Zhejiang Province(No.2023FE004)C.T.acknowledges the support from K.C.Wong Magna at Ningbo University。
文摘The self-consistent field theory(SCFT)was employed to numerically study the interaction and interpenetration between two opposing weak polyelectrolyte(PE)brushes formed by grafting weak PE chains onto the surfaces of two long and parallel columns with rectangularshaped cross-section immersed in a salty aqueous solution.The dependences of the brush heights and the average degree of ionization on various system parameters were also investigated.When the brush separation is relatively large compared with the unperturbed brush height,the degree of interpenetration between the two opposing PE brushes was found to increase with increasing grafting density and bulk degree of ionization.The degree of interpenetration also increases with the bulk salt concentration in the osmotic brush regime.Numerical results further revealed that,at a brush separation comparable to the unperturbed brush height,the degree of interpenetration does not increase further with increasing bulk degree of ionization,bulk salt concentration in the osmotic regime and grafting density.The saturation of the degree of interpenetration with these system parameters indicates that the grafted PE chains in the gap between the two columns retract and tilt in order to reduce the unfavorable electrostatic and steric repulsions between the two opposing PE brushes.Based on salt ion concentrations at the midpoint between the two opposing brushes,a quantitative criterion in terms of the unperturbed brush height and Debye screening length was established to determine the threshold value of the brush separation beyond which they are truly independent from each other.
文摘We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.
基金financially supported by the National Natural Science Foundation of China(No.21104078)the Project of Science and Technology of Jilin Province,China(No.201201096)the Scientific Research Starting Foundation for the Jilin Agricultural University,China(No.201212)
文摘The morphological changes of ABA amphiphilic triblock copolymer micelles in dilute solution were systematically studied by tuning the solvent property using self-consistent field simulation. The solvent property was tuned by changing the Flory-Huggins interaction parameters between each type of blocks and solvent, respectively. The simulation results show that by changing the solvent properties, a series of micelle morphologies such as vesicle, cage-like, ring-shaped, rod-like and spherical micelle morphologies can be obtained. Variations of the free energy of the solution system and the surface area of micelles with the Flory-Huggins interaction parameters were calculated to better understand the effect of solvent property on micelle morphologies. In addition, a phase diagram showing the morphological changes of micelles with the Flory-Huggins interaction parameters is provided.
基金financially supported by the National Natural Science Foundation of China(No.21374052)the support from K.C.Wong Magna Fund in Ningbo University
文摘The self-consistent field theory has been employed to numerically study the response of bi-disperse flexible polyelectrolyte (PE) brushes grafted on an electrode to electric fields generated by opposite surface charges on the PE-grafted electrode and a second parallel electrode. The numerical study reveals that, under a positive external electric field, the shorter and negatively charged PE chains are more responsive than the longer PE chains in terms of the relative changes in their respective brush heights. Whereas under a negative external electric field, the opposite was observed. The total electric force on the grafted PE chains was calculated and it was found that, under a positive external electric field, the magnitude of the total electric force acting on one shorter PE chain is larger than that on one longer PE chain, or vice versa. The underlying mechanism was unraveled through analyzing the total electric field across the two oppositely charged electrodes.
基金financially supported by the China Scholarship Council (No. 201406105018)the National Natural Science Foundation of China (No. 21004013)the National Basic Research Program of China (No. 2011CB605701)
文摘Self-consistent field theory(SCFT), as a state-of-the-art technique for studying the self-assembly of block copolymers, is attracting continuous efforts to improve its accuracy and efficiency. Here we present a fourth-order exponential time differencing Runge-Kutta algorithm(ETDRK4) to solve the modified diffusion equation(MDE) which is the most time-consuming part of a SCFT calculation. By making a careful comparison with currently most efficient and popular algorithms, we demonstrate that the ETDRK4 algorithm significantly reduces the number of chain contour steps in solving the MDE, resulting in a boost of the overall computation efficiency, while it shares the same spatial accuracy with other algorithms. In addition, to demonstrate the power of our ETDRK4 algorithm, we apply it to compute the phase boundaries of the bicontinuous gyroid phase in the strong segregation regime and to verify the existence of the triple point of the O70 phase, the lamellar phase and the cylindrical phase.
基金financially supported by the National Natural Science Foundation of China(No.21474107)
文摘ABCA tetrablock copolymers offer new opportunities for design of materials with novel structures. Using real-space self- consistent field theory and simulation, we systematically examined the self-assembly behavior of linear ABCA tetrablock copolymers in a 2D space. The simulation was carried out under conditions of symmetrical compositions and interactions. We focus on the influence of chain length ratio of block A and interactions between block A and other blocks B and C on the self-assembly behavior of the copolymer system. The simulation results show that most of the structures self-assembled by the ABCA tetrablock copolymers are centrosymmetric, such as diblock-like lameUa phase, two kinds of lameUae with beads at interface, two kinds of hierarchical lamella phase, hexagonal honeycomb-like phase, lamella phase with mixed BC and hexagonal spheres with mixed BC. Furthermore, we find that a novel noncentrosymmetric Janus spheres can be obtained when the interaction between blocks B and C is strong, whereas a noncentrosymmetric lamella phase was obtained at weak interaction between blocks B and C. Phase diagrams for the ABCA tetrablock copolymers with different interaction strength between blocks B and C are constructed by comparing free energies of candidate ordered structures. In addition, studies on the metastable behavior of the system reveal that enthalpy plays an important role in the metastable behavior of the ABCA tetrablock copolymer system. Our work can provide useful guide for structure control of such kind of tetrablock copolymers in experiments.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.20973176,20990234,50821062,and 20874111)973 Program of the Ministry of Science and Technology(MOST)(Grant No.2011CB808502)the Fundamental Research Funds for the Central Universities.
文摘This review article addresses the widely used self-consistent field theory(SCFT)in interacting polymer systems.The theoretical framework and numerical method of solving the self-consistent equations are presented.In this paper,different structures of polymer can be considered,such as homopolymer,block copolymer,polydisperse polymer and charged polymer.Several systems,micro/macro phase separation,interface,self-assembly,are presented as examples to demonstrate its applications in details.Besides,the fluctuation effects are considered.The first order is Gaussian fluctuation theory,which can be used to determine the stability of the mean-field solution and predict the kinetics of unstable structure.The derivation and applications of Gaussian fluctuation theory are presented as well.
基金The authors acknowledge the financial support from the Natural Science Foundation of China(Grant Numbers:11101276,and 91130012),Youth Talents Program by Chinese Organization Department,and the HPC center of Shanghai Jiao Tong University.
文摘The interaction force between likely charged particles/surfaces is usually repulsive due to the Coulomb interaction.However,the counterintuitive like-charge attraction in electrolytes has been frequently observed in experiments,which has been theoretically debated for a long time.It is widely known that the mean field Poisson-Boltzmann theory cannot explain and predict this anomalous feature since it ignores many-body properties.In this paper,we develop efficient algorithm and perform the force calculation between two interfaces using a set of self-consistent equations which properly takes into account the electrostatic correlation and the dielectric-boundary effects.By solving the equations and calculating the pressure with the Debye-charging process,we show that the self-consistent equations could be used to study the attraction between like-charge surfaces from weak-coupling to mediate-coupling regimes,and that the attraction is due to the electrostatics-driven entropic force which is significantly enhanced by the dielectric depletion of mobile ions.A systematic investigation shows that the interaction forces can be tuned by material permittivity,ionic size and valence,and salt concentration,and that the like-charge attraction exists only for specific regime of these parameters.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金supported by the Australian Research Council (DP200101353)。
文摘Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
基金the National Natural Science Foundation of China(Grant No.42020104006).
文摘Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.
基金supported by the National Natural Science Foundation of China(Grant No.42004030)Basic Scientific Fund for National Public Research Institutes of China(Grant No.2022S03)+1 种基金Science and Technology Innovation Project(LSKJ202205102)funded by Laoshan Laboratory,and the National Key Research and Development Program of China(2020YFB0505805).
文摘The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.
基金financial support from the National Natural Science Foundation of China(Grant No.41827806)the Liaoning Provincial Science and Technology Program of China(Grant No.2022JH2/101300109).
文摘Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.
基金partially supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)the Innovation Fund of CNNC(Lingchuang Fund)+1 种基金EP/T000414/1 PREdictive Modeling with QuantIfication of UncERtainty for MultiphasE Systems(PREMIERE)the Leverhulme Centre for Wildfires,Environment,and Society through the Leverhulme Trust(No.RC-2018-023).
文摘The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively.
基金This work is supported in part by the National Key Research and Development Program of China(Nos.2022YFA1604900)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)+3 种基金the National Natural Science Foundation of China(Nos.12275053,12025501,11890710,11890714,12147101,12075061,and 12225502)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)Shanghai National Science Foundation(No.20ZR1404100)STCSM(No.23590780100).
文摘Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects.
基金supported by the National Natural Science Foundation of China(No.22269010,52231007,12327804,T2321003,22088101)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+1 种基金the Major Research Program of Jingdezhen Ceramic Industry(No.2023ZDGG002)the Ministry of Science and Technology of China(973 Project No.2021YFA1200600).
文摘The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.