This paper presents the development of a mesoscale self-contained quadruped mobile robot that employs two pieces of piezocomposite actuators for the bounding locomotion.The design of the robot leg is inspired by legge...This paper presents the development of a mesoscale self-contained quadruped mobile robot that employs two pieces of piezocomposite actuators for the bounding locomotion.The design of the robot leg is inspired by legged insects and animals, and the biomimetic concept is implemented in the robot in a simplified form,such that each leg of the robot has only one degree of freedom.The lack of degree of freedom is compensated by a slope of the robot frame relative to the horizontal plane.For the implementation of the self-contained mobile robot,a small power supply circuit is designed and installed on the robot.Experimental results show that the robot can locomote at about 50 mm·s^(-1)with the circuit on board,which can be considered as a significant step toward the goal of building an autonomous legged robot actuated by piezoelectric actuators.展开更多
Firefighters’low back disorders(LBDs)are closely related to excessive spine loading when using the self-contained breathing apparatus(SCBA)continuously.The purpose of this study was to quantify firefighters’spine lo...Firefighters’low back disorders(LBDs)are closely related to excessive spine loading when using the self-contained breathing apparatus(SCBA)continuously.The purpose of this study was to quantify firefighters’spine loading and evaluate the effects of strap lengths of SCBA on altering spine loading.Computer-based musculoskeletal models of three varying-strapped SCBA conditions and a control condition(CC)with no SCBA equipped were developed.The model was driven using three-dimensional(3 D)inertial motion capture data from twelve male subjects performing a walking task and the predicted ground reaction force(GRF).Electromyography(EMG)activities were also recorded to validate the results from the model.The 4 th-5 th lumbar vertebra(L4/L5)joint reaction forces,as well as erector spinae and rectus abdominis forces,were finally obtained.Results demonstrated that carrying SCBA significantly increased the compressive force and anteroposterior shear force at the spine.The risk of potential LBDs increased by about 17.77%.Dynamic balance of erector spinae and rectus abdominis contraction was also disturbed when carrying SCBA,indicating a higher risk of spine muscle strain.Adjustment of SCBA strap length was an efficient method to influence spine loading.The medium-fitting strap(MS)with a length of around 101 cm generated minimum joint reaction forces and achieved the optimum dynamic balance of spine muscle contraction,which was recommended for firefighters.展开更多
基金supported by Korea Research Foundation grant(KRF-2006-005-J03303)and Seoul R&BD Program
文摘This paper presents the development of a mesoscale self-contained quadruped mobile robot that employs two pieces of piezocomposite actuators for the bounding locomotion.The design of the robot leg is inspired by legged insects and animals, and the biomimetic concept is implemented in the robot in a simplified form,such that each leg of the robot has only one degree of freedom.The lack of degree of freedom is compensated by a slope of the robot frame relative to the horizontal plane.For the implementation of the self-contained mobile robot,a small power supply circuit is designed and installed on the robot.Experimental results show that the robot can locomote at about 50 mm·s^(-1)with the circuit on board,which can be considered as a significant step toward the goal of building an autonomous legged robot actuated by piezoelectric actuators.
基金Fundamental Research Funds for the Central Universities,China(No.2232022G-08)。
文摘Firefighters’low back disorders(LBDs)are closely related to excessive spine loading when using the self-contained breathing apparatus(SCBA)continuously.The purpose of this study was to quantify firefighters’spine loading and evaluate the effects of strap lengths of SCBA on altering spine loading.Computer-based musculoskeletal models of three varying-strapped SCBA conditions and a control condition(CC)with no SCBA equipped were developed.The model was driven using three-dimensional(3 D)inertial motion capture data from twelve male subjects performing a walking task and the predicted ground reaction force(GRF).Electromyography(EMG)activities were also recorded to validate the results from the model.The 4 th-5 th lumbar vertebra(L4/L5)joint reaction forces,as well as erector spinae and rectus abdominis forces,were finally obtained.Results demonstrated that carrying SCBA significantly increased the compressive force and anteroposterior shear force at the spine.The risk of potential LBDs increased by about 17.77%.Dynamic balance of erector spinae and rectus abdominis contraction was also disturbed when carrying SCBA,indicating a higher risk of spine muscle strain.Adjustment of SCBA strap length was an efficient method to influence spine loading.The medium-fitting strap(MS)with a length of around 101 cm generated minimum joint reaction forces and achieved the optimum dynamic balance of spine muscle contraction,which was recommended for firefighters.