期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cracking Propagation of Hardening Concrete Based on the Extended Finite Element Method 被引量:2
1
作者 朱振泱 CHEN Weimin ZHANG Guoxin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1132-1139,共8页
Self-deformation cracking is the cracking caused by thermal deformation, autogenous volume deformation or shrinkage deformation. In this paper, an extended finite element calculation method was deduced for concrete cr... Self-deformation cracking is the cracking caused by thermal deformation, autogenous volume deformation or shrinkage deformation. In this paper, an extended finite element calculation method was deduced for concrete crack propagation under a constant hydration and hardening condition during the construction period, and a corresponding programming code was developed. The experimental investigation shows that initial crack propagation caused by self-deformation loads can be analyzed by this program. This improved algorithm was a preliminary application of the XFEM to the problem of the concrete self-deformation cracking during the hydration and hardening period. However, room for improvement exists for this algorithm in terms of matching calculation programs with mass concrete temperature fields containing cooling pipes and the influence of creep or damage on crack propagation. 展开更多
关键词 concrete crack self-deformation loads extended finite element method
下载PDF
Bioinspired 4D Printing Shape-Memory Polyurethane Rhinoplasty Prosthesis for Dynamic Aesthetic Adjustment
2
作者 Jiaqi Liu Guiwei Li +5 位作者 He Liu Jincheng Wang Hui Wang Xue Gao Qingping Liu Chenyu Wang 《Journal of Bionic Engineering》 SCIE EI 2024年第3期1397-1411,共15页
The disparity between the postoperative outcomes of rhinoplasty and the expected results frequently necessitates secondary or multiple surgeries as a compensatory measure,greatly diminishing patient satisfaction.Howev... The disparity between the postoperative outcomes of rhinoplasty and the expected results frequently necessitates secondary or multiple surgeries as a compensatory measure,greatly diminishing patient satisfaction.However,there is renewed optimism for addressing these challenges through the innovative realm of Four-Dimensional(4D)printing.This groundbreaking technology enables three-dimensional objects with shape-memory properties to undergo predictable transformations under specific external stimuli.Consequently,implants crafted using 4D printing offer significant potential for dynamic adjustments.Inspired by worms in our research,we harnessed 4D printing to fabricate a Shape-Memory Polyurethane(SMPU)for use as a nasal augmentation prosthesis.The choice of SMPU was guided by its Glass Transition Temperature(Tg),which falls within the acceptable temperature range for the human body.This attribute allowed for temperature-responsive intraoperative self-deformation and postoperative remodeling.Our chosen animal model for experimentation was rabbits.Taking into account the anatomical structure of the rabbit nose,we designed and produced nasal augmentation prostheses with superior biocompatibility.These prostheses were then surgically implanted in a minimally invasive manner into the rabbit noses.Remarkably,they exhibited successful temperature-controlled in-surgery self-deformation according to the predetermined shape and non-invasive remodeling within a mere 9 days post-surgery.Subsequent histological evaluations confirmed the practical viability of these prostheses in a living organism.Our research findings posit that worm-inspired 4D-printed SMPU nasal prostheses hold significant promise for achieving dynamic aesthetic adjustments. 展开更多
关键词 4D printing Shape memory polyurethane Rhinoplasty self-deformation Dynamic aesthetic adjustment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部