A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control...A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved.展开更多
In situ pressure-preserved coring(IPP-Coring)technology is considered one of the most efficient methods for assessing resources.However,seal failure caused by the rotation of pressure controllers greatly affects the s...In situ pressure-preserved coring(IPP-Coring)technology is considered one of the most efficient methods for assessing resources.However,seal failure caused by the rotation of pressure controllers greatly affects the success of pressure coring.In this paper,a novel spherical-cylindrical shell pressure controller was proposed.The finite element analysis model was used to analyze the stress distribution and deformation characteristics of the pressure controller at different rotation angles.The seal failure mechanism caused by the rotation of the pressure controller was discussed.The stress deviation rate was defined to quantitatively characterize the stress concentration.Based on the test equipment designed in this laboratory,the ultimate bearing strength of the pressure controller was tested.The results show that the rotation of the valve cover causes an increase in the deformation on its lower side.Furthermore,the specific sealing pressure in the weak zone is greatly reduced by a statistically significant amount,resulting in seal failure.When the valve cover rotates 5°around the major axis,the stress deviation rate is-92.6%.To prevent rotating failure of the pressure controller,it is necessary to control the rotation angle of the valve cover within 1°around the major axis.The results of this research can help engineers reduce failure-related accidents,provide countermeasures for pressure coring,and contribute to the exploration and evaluation of deep oil and gas resources.展开更多
High pressure is an important development orientation in pneumatic field,since it can not only improve dynamic characteristics of pneumatic system but also decrease the size of components and mounting space.Due to the...High pressure is an important development orientation in pneumatic field,since it can not only improve dynamic characteristics of pneumatic system but also decrease the size of components and mounting space.Due to the advantages of high energy density and high instant expansibility,high pressure gas has been widely used in many applications.However,systematic researches are lacked especially in pressure characteristics which are very important in pneumatic system at present.In a high pressure pneumatic system,the pressure of a fixed cavity with annular clearance needs to be controlled within a wide range,so a single stage proportional slide valve is proposed to satisfy the requirements of high pressure and low flow rate.First,working principle and structure of the pressure assembly and the slide valve are introduced.Then mathematical model of the high pressure pneumatic system is built up;controllable pressure range is simulated,and influence of uncertain factors,such as fit clearance of the pressure valve and the cavity on controllable pressure,is discussed.Finally,a test bench of the pressure assembly is built up,and the controllable pressure and step response experiments are carried out.Both simulation and experimental results show that the designed slide valve can satisfy the requirements well.The proposed clearance presumption method based on simulation and experimental results is valuable for indirect measurement of processing tolerance.展开更多
Based on the flow characteristic equation of air in adiabatic process, the characteristics of modulated on-off valve in a pneumatic pressure control system is analyzed theoretically. The relationship between the param...Based on the flow characteristic equation of air in adiabatic process, the characteristics of modulated on-off valve in a pneumatic pressure control system is analyzed theoretically. The relationship between the parameters and performance of the system is obtained, and it is also observed that the control error is proportional to the on-off period of the valve.展开更多
A novel miniature pressure regulator is fabricated and studied. The regulator can easily be integrated into portable mechatronics or miniature robotic applications because of its lightweight and compact size. An espec...A novel miniature pressure regulator is fabricated and studied. The regulator can easily be integrated into portable mechatronics or miniature robotic applications because of its lightweight and compact size. An especial poppet is designed to minimize its size and to withstand high-pressure. The pressure regulator is designed for a hopping robot which is powered by a combustion system. The hopping robot has great moving capacities such as jumping over big obstacles, wails and dit- ches. The regulator helps the hopping robot to decrease size and weight, and to sustain high pres- sure of oxygen and fuel tank. It will maintain constant output pressure to obtain suitable proportion of oxygen and fuel in the combustion cylinder. Dynamic simulation of the miniature pneumatic pres- sure regulator is performed. Experiments on prototype of miniature pneumatic pressure regulator are also carried out to validate the performance and satisfied performance is obtained.展开更多
By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates...By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and mini- mized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The pre- dicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50275102)Provincial Foundation for Abroad Return People of Shanxi (No.101045).
文摘A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved.
基金supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)National Natural Science Foundation of China No.51827901 and U2013603
文摘In situ pressure-preserved coring(IPP-Coring)technology is considered one of the most efficient methods for assessing resources.However,seal failure caused by the rotation of pressure controllers greatly affects the success of pressure coring.In this paper,a novel spherical-cylindrical shell pressure controller was proposed.The finite element analysis model was used to analyze the stress distribution and deformation characteristics of the pressure controller at different rotation angles.The seal failure mechanism caused by the rotation of the pressure controller was discussed.The stress deviation rate was defined to quantitatively characterize the stress concentration.Based on the test equipment designed in this laboratory,the ultimate bearing strength of the pressure controller was tested.The results show that the rotation of the valve cover causes an increase in the deformation on its lower side.Furthermore,the specific sealing pressure in the weak zone is greatly reduced by a statistically significant amount,resulting in seal failure.When the valve cover rotates 5°around the major axis,the stress deviation rate is-92.6%.To prevent rotating failure of the pressure controller,it is necessary to control the rotation angle of the valve cover within 1°around the major axis.The results of this research can help engineers reduce failure-related accidents,provide countermeasures for pressure coring,and contribute to the exploration and evaluation of deep oil and gas resources.
基金supported by National Natural Science Foundation of China(Grant No.50575202)
文摘High pressure is an important development orientation in pneumatic field,since it can not only improve dynamic characteristics of pneumatic system but also decrease the size of components and mounting space.Due to the advantages of high energy density and high instant expansibility,high pressure gas has been widely used in many applications.However,systematic researches are lacked especially in pressure characteristics which are very important in pneumatic system at present.In a high pressure pneumatic system,the pressure of a fixed cavity with annular clearance needs to be controlled within a wide range,so a single stage proportional slide valve is proposed to satisfy the requirements of high pressure and low flow rate.First,working principle and structure of the pressure assembly and the slide valve are introduced.Then mathematical model of the high pressure pneumatic system is built up;controllable pressure range is simulated,and influence of uncertain factors,such as fit clearance of the pressure valve and the cavity on controllable pressure,is discussed.Finally,a test bench of the pressure assembly is built up,and the controllable pressure and step response experiments are carried out.Both simulation and experimental results show that the designed slide valve can satisfy the requirements well.The proposed clearance presumption method based on simulation and experimental results is valuable for indirect measurement of processing tolerance.
文摘Based on the flow characteristic equation of air in adiabatic process, the characteristics of modulated on-off valve in a pneumatic pressure control system is analyzed theoretically. The relationship between the parameters and performance of the system is obtained, and it is also observed that the control error is proportional to the on-off period of the valve.
文摘A novel miniature pressure regulator is fabricated and studied. The regulator can easily be integrated into portable mechatronics or miniature robotic applications because of its lightweight and compact size. An especial poppet is designed to minimize its size and to withstand high-pressure. The pressure regulator is designed for a hopping robot which is powered by a combustion system. The hopping robot has great moving capacities such as jumping over big obstacles, wails and dit- ches. The regulator helps the hopping robot to decrease size and weight, and to sustain high pres- sure of oxygen and fuel tank. It will maintain constant output pressure to obtain suitable proportion of oxygen and fuel in the combustion cylinder. Dynamic simulation of the miniature pneumatic pres- sure regulator is performed. Experiments on prototype of miniature pneumatic pressure regulator are also carried out to validate the performance and satisfied performance is obtained.
基金supported in part by the National Natural Science Foundation of China,Key Project (10532010)the Ministry of Science and Technology of China’s Turbulence Program(2009CB724101)+1 种基金the National Basic Research Program of China(2007CB714600)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(10921202/A0204)
文摘By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and mini- mized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The pre- dicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.