期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
Experimental and Numerical Evaluation of the Cavitation Performances of Self-Excited Oscillating Jets
1
作者 Yuanyuan Zhao Fujian Zhao +2 位作者 Guohui Li Wei Xu Xiuli Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1883-1901,共19页
Self-excited oscillating jets(SOJ)are used in several practical applications.Their performances are significantly affected by structural parameters and the target distance.In this study,a geometric model of the SOJ no... Self-excited oscillating jets(SOJ)are used in several practical applications.Their performances are significantly affected by structural parameters and the target distance.In this study,a geometric model of the SOJ nozzle accounting for multiple structural parameters is introduced,then the related cavitation performances and the optimal target distance are investigated using a Large-Eddy Simulation(LES)approach.Results are also provided about an experiment,which was conducted to validate the simulation results.By analyzing the evolution of the vapor volume fraction at the nozzle outlet,a discussion is presented about the effect of the aforementioned structural parameters on the cavitation performances and the target distance.It is shown that the distribution of cavitation clouds at the outlet of the SOJ nozzle displays a non-monotonic trend(first increasing,then decreasing).Under working conditions with an inlet pressure of 4 MPa,a SOJ nozzle outlet/inlet diameter ratio(D_(1)/D_(2))of 1.2,and a chamber diameter ratio(D/L)close to 1.8,the nozzle outlet cavitation performance attains a maximum.The optimal structural parameters correspond to the optimal target distance,which is near 50 mm.The experiments have revealed that the SOJ nozzle with the above parameters displays a good cavitation erosion effect at the target distance of 50 mm,in satisfactory agreement with the numerical simulation results. 展开更多
关键词 self-excited oscillating nozzle cavitating jet target distant LES CAVITATION
下载PDF
THEORY AND EXPERIMENTAL STUDY OF THE SELF-EXCITED OSCILLATION PULSED JET NOZZLE 被引量:28
2
作者 LiaoZhenfang LiJun +3 位作者 ChenDeshu DengXiaogang TangChuanlin ZhangFenghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第4期379-383,共5页
Comparing with usual continuous jet nozzle, the self-excited oscillationpulsed jet nozzle SEOPJN) can make jet generate a higher peak of pressure and larger scouringvolume. And it can make jet increase the effective s... Comparing with usual continuous jet nozzle, the self-excited oscillationpulsed jet nozzle SEOPJN) can make jet generate a higher peak of pressure and larger scouringvolume. And it can make jet increase the effective standoff distance, too. The basic theories of theSEOPJN are introduced. Some experimental results are shown. According to the results, using tricornbits assembled the SEOPJN to drill oil well, the ROP increases by 8 percent approx 77 percent, andthe rates of the footage for tricorn bit increases by 6.7 percent approx 44.0 percent. 展开更多
关键词 self-excited oscillation pulsed jet nozzle BIT Point vortex
下载PDF
The Theory and Experimental Study of the Self-Excited Oscillation Pulsed Jet Nozzle (Pipeline Pulsed Flow Generator) 被引量:3
3
作者 Shiqiang Lai Zhengfang Liao 《Natural Resources》 2013年第5期395-403,共9页
In this paper, the basic theories of the Self-excited Oscillation Pulsed Jet Nozzle (SEOPJN) invented by the authors are introduced. Then, some experimental results are shown. According to the results, using tricorn b... In this paper, the basic theories of the Self-excited Oscillation Pulsed Jet Nozzle (SEOPJN) invented by the authors are introduced. Then, some experimental results are shown. According to the results, using tricorn bits assembled the SEOPJN to drill oil well, the rate of penetration (ROP) increases by 8% - 77%, and the rate of the footage for tricorn bit increases by 6.7% - 44%. Although the test was conducted in the water, good result was got in nature gas transportation. The volume of gas transportation could be increased by the Self-excited Oscillation Pulsed generator while the gas pressure drop could be decreased, since it significantly reduced the pressure loss during gas transportation. 展开更多
关键词 self-excited oscilLATION PULSED JET nozzle Oil WELL Natural Gas
下载PDF
Impact frequency variation of self-excited oscillation pulsed supercritical carbon dioxide jets
4
作者 SHEN Helian LIU Yong +3 位作者 WEI Jianping QIU Liming LI Haichao DENG Yujie 《Petroleum Exploration and Development》 SCIE 2023年第5期1261-1268,共8页
In order to obtain the impact frequency of resonant coal breaking by self-excited oscillation pulsed supercritical carbon dioxide(SC-CO_(2))jet,large eddy simulation was used to analyze the formation and development p... In order to obtain the impact frequency of resonant coal breaking by self-excited oscillation pulsed supercritical carbon dioxide(SC-CO_(2))jet,large eddy simulation was used to analyze the formation and development process of self-excited oscillation pulsed SC-CO_(2)jet,the variation of jet impact frequency in the nozzle and the free flow field,and the variation of jet impact frequency at different positions in the jet axis and under different cavity lengths.The test device of jet impact frequency was developed,and experiments were performed to verify the conclusions of the numerical simulations.The results show that the frequency of the self-excited oscillation pulsed SC-CO_(2)jet is different in the nozzle and the free flow field.In the nozzle,the frequency generated by the fluid disturbance is the same,and the jet frequency at the exit of the nozzle is consistent with that inside the nozzle.In the free flow field,due to the compressibility of CO_(2),the pressure,velocity and other parameters of SC-CO_(2)jets have obvious fluctuation patterns.This feature causes the impact frequency of the self-excited oscillation pulsed SC-CO_(2)jet to decrease gradually in the axis.Changing the cavity length allows the adjustment of the jet impact frequency in the free flow field by affecting the disturbance frequency of the self-excited oscillation pulsed SC-CO_(2)jet inside the nozzle. 展开更多
关键词 self-excited oscillation plused SC-CO_(2)jet resonant coal-breaking jet impact frequency cavity length
下载PDF
Influence of Self-excited Vibrating Cavity Structure on Droplet Diameter Characteristics of Twin-fluid Nozzle 被引量:2
5
作者 Bo Chen Dian-Rong Gao +1 位作者 Shao-Feng Wu Jian-Hua Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第4期192-201,共10页
It is a great challenge to find effective atomizing technology for reducing industrial pollution; the twin-fluid atomizing nozzle has drawn great attention in this field recently. Current studies on twin-fluid nozzles... It is a great challenge to find effective atomizing technology for reducing industrial pollution; the twin-fluid atomizing nozzle has drawn great attention in this field recently. Current studies on twin-fluid nozzles mainly focus on droplet breakup and single droplet characteristics. Research relating to the influences of structural parameters on the droplet diameter characteristics in the flow field is scarcely available. In this paper, the influence of a self-excited vibrating cavity structure on droplet diameter characteristics was investigated. Twin-fluid atomizing tests were performed by a self-built open atomizing test bench, which was based on a phase Doppler particle analyzer(PDPA). The atomizing flow field of the twin-fluid nozzle with a self-excited vibrating cavity and its absence were tested and analyzed. Then the atomizing flow field of the twin-fluid nozzle with different self-excited vibrating cavity structures was investigated.The experimental results show that the structural parameters of the self-excited vibrating cavity had a great effect on the breakup of large droplets. The Sauter mean diameter(SMD) increased with the increase of orifice diameter or orifice depth. Moreover, a smaller orifice diameter or orifice depth was beneficial to enhancing the turbulence around the outlet of nozzle and decreasing the SMD. The atomizing performance was better when the orifice diameter was2.0 mm or the orifice depth was 1.5 mm. Furthermore, the SMD increased first and then decreased with the increase of the distance between the nozzle outlet and self-excited vibrating cavity, and the SMD of more than half the atomizing flow field was under 35 μm when the distance was 5.0 mm. In addition, with the increase of axial and radial distance from the nozzle outlet, the SMD and arithmetic mean diameter(AMD) tend to increase. The research results provide some design parameters for the twin-fluid nozzle, and the experimental results could serve as a beneficial supplement to the twin-fluid nozzle study. 展开更多
关键词 Atomizing nozzle Twin-fluid Sauter mean diameter Arithmetic mean diameter self-excited vibrating cavity Phase Doppler particle analyzer
下载PDF
Side force control on slender body by self-excited oscillation flag 被引量:1
6
作者 Jian Zhai Weiwei Zhang +3 位作者 Chuanqiang Gao Yanhua Zhang Zhengyin Ye Huanling Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第5期230-232,共3页
Strong asymmetrical vortices appear on the leeward of slender body at high angles of attack, which has very unfavorable effect on the stability and control of the aircraft. A method is developed to control the side fo... Strong asymmetrical vortices appear on the leeward of slender body at high angles of attack, which has very unfavorable effect on the stability and control of the aircraft. A method is developed to control the side force of slender body at high angles of attack, and is verified in wind tunnel. A thin-film triangular self-excited oscillation flag is fixed at the tip of the slender body model whose semi-apex angle is 10°. Side force is approximately linearly proportional to roll-setting angle of self-excited oscillation flag at high angles of attack, and the slop of fitting straight line obtained by the least square method is -0.158. The linear relationship between side force and roU-setting angle provides convenience for developing side force control law of slender body at high angles of attack. Experimental data shows that the side force coefficients vary linearly with roll-setting angles when a specific plastic self-excited oscillation flag is used as the control flag. The range of side force coefficient and roll-setting angle are, respectively, -3.2 to 3.0 and -20° to 20°. The device is simple, effective, and is of great potential in engineering application. 展开更多
关键词 self-excited oscillation flag Slender bodyHigh angle of attack Proportional control Side force
下载PDF
Characteristics of Oscillation in Cavity of Helmholtz Nozzle Generating Self‑excited Pulsed Waterjet
7
作者 Miao Yuan Deng Li +2 位作者 Yong Kang Hanqing Shi Haizeng Pan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期264-274,共11页
Cavity flow oscillations in the axisymmetric cavity are critical to the operating efficiency of self-excited pulsed waterjets,which are widely employed in many practical applications.In this study,the behaviors of a t... Cavity flow oscillations in the axisymmetric cavity are critical to the operating efficiency of self-excited pulsed waterjets,which are widely employed in many practical applications.In this study,the behaviors of a turbulent flow in axisymmetric cavities causing cavity flow oscillations are investigated based on wall pressure characteristics.Experiments are performed using four Helmholtz nozzles with varying length-to-radius ratios at flow velocities of 20–80 m/s.Three orders of hydrodynamic modes in axisymmetric cavity are obtained through the spectral analysis of wall pressure.Based on the experimental results,the empirical coefficient of Rossiter’s formula is modified,and the values of the parameter phase lag and the ratio of convection velocity to free stream velocity are obtained as 0.061 and 0.511,respectively.In addition,the spectral peak with a relatively constant frequency shows that the flow-acoustic resonance is excited significantly.A modified model is introduced based on the fluidic networks to predict the lockon frequency.The results obtained can provide a basis for the structural optimization of the nozzle to improve the performance of self-excited pulsed waterjets. 展开更多
关键词 self-excited cavitation waterjet Flow-excited oscillations Frequency characteristics Vibration analysis
下载PDF
Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction
8
作者 李志新 曹庆杰 Léger Alain 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期480-488,共9页
We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The movin... We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The moving belt friction is modeled as the Coulomb friction to formulate the mathematical model of the proposed self-excited SD oscillator. The equilibrium states of the unperturbed system are obtained to show the complex equilibrium bifurcations. Phase portraits are depicted to present the hyperbolic structure transition, the multiple stick regions, and the friction-induced asymmetry phenomena. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple stick-slip phenomena and the stick-slip chaos in the perturbed self-excited system. The results presented here provide an opportunity for us to get insight into the mechanism of the complex friction-induced nonlinear dynamics in mechanical engineering and geography. 展开更多
关键词 self-excited smooth and discontinuous (SD) oscillator multiple stick regions friction-inducedasymmetry stick-slip chaos
下载PDF
Effects of Area Discontinuity at Nozzle Inlet on the Characteristics of Self-resonating Cavitating Waterjet 被引量:8
9
作者 LI Deng KANG Yong +2 位作者 DING Xiaolong WANG Xiaochuan FANG Zhenlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期813-824,共12页
The current research on self-resonating cavitating waterjet(SRCW) mainly focuses on the generation mechanism and structure optimization.Researches relating to the influences of disturbances at nozzle inlet on the ch... The current research on self-resonating cavitating waterjet(SRCW) mainly focuses on the generation mechanism and structure optimization.Researches relating to the influences of disturbances at nozzle inlet on the characteristics of the jet are rarely available.In order to further improve the performance of SRCW,effects of area discontinuity(enlargement and contraction) are experimentally investigated using three organ-pipe nozzles.Axial pressure oscillation peak and amplitude as well as aggressive erosion intensity of the jet are used to evaluate the effects.The results reveal that area enlargement and contraction affect the peak differently,depending on the inlet pressure,nozzle geometry,and standoff distance;while area contraction always improves the amplitude regardless of these factors.At inlet pressures of 10 MPa and 20 MPa,area discontinuity improves the peak at almost all the testing standoff distances,while this only happens at smaller standoff distances with the inlet pressure increased to 30 MPa.The capability of area discontinuity for improving the amplitude is enhancing with increasing inlet pressure.Moreover,the cavitation erosion ability of the jet can be largely enhanced around the optimum standoff distance,depending on the type of area discontinuity and nozzle geometry.A preliminary analysis of the influence of area discontinuity on the disturbance waves in the flow is also performed.The proposed research provides a new method for effectively enhancing the performance of SRCW. 展开更多
关键词 area discontinuity self-resonating cavitating waterjet(SRCW) organ-pipe nozzle pressure oscillation cavitation erosion
下载PDF
HARMONIC, SUBHARMONIC, SUPERHARMONIC, SIMULTANEOUS SUB/SUPER HARMONIC AND COMBINATION RESONANCES OF SELF-EXCITED TWO COUPLED SECOND ORDER SYSTEMS TO MULTI-FREQUENCY EXCITATION 被引量:1
10
作者 A.M.Elnaggar A.F.El-Basyouny 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1993年第1期61-71,共11页
Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. T... Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case. 展开更多
关键词 RESONANCE nonlinear oscillation multiple-scales method self-excited system multi-frequency excitation
下载PDF
Experiments on Deflecting & Oscillating Waterjet 被引量:2
11
作者 卢义玉 《Journal of Chongqing University》 CAS 2002年第1期11-15,共5页
A new type jet,the oscillating & deflecting jet ,is put forward and its oscillating and deflecting characteristics are investigated.The nozzle of the self-oscillating & deflecting water jet consists of an upst... A new type jet,the oscillating & deflecting jet ,is put forward and its oscillating and deflecting characteristics are investigated.The nozzle of the self-oscillating & deflecting water jet consists of an upstream nozzle,a downstream nozzle,an oscillating chamber and two switches,It is experimentally shown that the deflective angle may reach 9.53 degeree,the generated pressure fluctuation is very regular and the jet can efficiently increase the ability for bradking and cutting by eliminating the water cushion effect associated with a continuous jet. 展开更多
关键词 射流 振动水力喷射 减震效应
下载PDF
Optical Measurements of Shock Waves in Critical Nozzles at Low Reynolds Numbers
12
作者 Soichiro Yagi Saya Inoue +2 位作者 Shinichiro Nakao Daisuke Ono Yoshiaki Miyazato 《Journal of Flow Control, Measurement & Visualization》 2017年第2期36-50,共15页
Two-dimensional critical nozzle flows at low Reynolds numbers are visualized by the rainbow schlieren deflectometry. Experiments have been performed in a region of overexpanded nozzle flow. The variation of the shock ... Two-dimensional critical nozzle flows at low Reynolds numbers are visualized by the rainbow schlieren deflectometry. Experiments have been performed in a region of overexpanded nozzle flow. The variation of the shock structure against the back pressure ratio can be clearly visible with color gradation. Static pressure rises due to the shock-induced flow separation are compared with the previous theories. The unsteady characteristics of overexpanded critical nozzle flows at low Reynolds numbers are quantitatively and qualitatively visualized using laser schlieren and Mach-Zehnder interferometer systems combined with a high-speed digital camera. It was found that an oscillating normal shock wave appears inside the nozzle, and that the shock wave has a specified dominant frequency. Also the time-history of the oscillating shock wave is obtained from both the systems and compared with each other. 展开更多
关键词 COMPRESSIBLE FLOW Micro nozzle Flows Optical FLOW Visualization RAINBOW SCHLIEREN DEFLECTOMETRY MACH-ZEHNDER Interferometry Shock Wave oscillation FLOW Separation
下载PDF
Internal Vibration and Synchronization of Four Coupled Self-Excited Elastic Beams
13
作者 Miguel A. Barron 《Open Journal of Applied Sciences》 2016年第8期501-513,共13页
The vibration behavior and the synchronization between some internal points of four coupled self-excited beams are numerically studied. Coupling through the root of the beams is considered. The transverse displacement... The vibration behavior and the synchronization between some internal points of four coupled self-excited beams are numerically studied. Coupling through the root of the beams is considered. The transverse displacements of the internal points and the beam tips are monitored, and the power spectra of the resulting time series are employed to determine the oscillation frequencies. The synchronization between beams is analyzed using phase portraits and correlation coefficients. Numerical results show multiple frequencies in the vibration pattern, and complex patterns of synchronization between pairs of beams. 展开更多
关键词 Coupled Beams self-excited Beams Spatially Extended oscillators SYNCHRONIZATION Vibration Behavior
下载PDF
自激振荡脉冲SC-CO_(2)射流冲击频率调制
14
作者 魏建平 李翔 +3 位作者 刘勇 沈荷莲 李海超 高梦雅 《煤炭学报》 EI CAS CSCD 北大核心 2024年第6期2675-2690,共16页
SC-CO_(2)射流钻完井技术能保证煤层气井稳定性、提高钻井速度和破岩效率,具有广泛的应用前景。但较高的破煤能耗和复杂的系统限制了其工程推广,自激振荡脉冲SC-CO_(2)射流冲击频率和煤岩体的固有频率相同或满足相位关系,能充分发挥谐... SC-CO_(2)射流钻完井技术能保证煤层气井稳定性、提高钻井速度和破岩效率,具有广泛的应用前景。但较高的破煤能耗和复杂的系统限制了其工程推广,自激振荡脉冲SC-CO_(2)射流冲击频率和煤岩体的固有频率相同或满足相位关系,能充分发挥谐振效应,达到更好的破煤效果。喷嘴结构是影响射流冲击频率的关键,现有的自振脉冲水射流频率调制方法并不适用于SC-CO_(2)射流。为实现对SC-CO_(2)射流冲击频率的调制,采用大涡模拟研究不同喷嘴结构对自激振荡脉冲SCCO_(2)射流冲击频率的影响规律,通过权重分析得到不同喷嘴结构参数对射流冲击频率的影响程度。采用射流冲击频率测定实验及破煤实验验证喷嘴结构对射流冲击频率的影响规律以及射流冲击频率调制方法的可靠性。结果表明:振荡腔直径、振荡腔长度、碰撞壁角度是影响射流冲击频率的关键因素,可通过调节振荡腔结构实现对射流冲击频率的大幅调制,从而达到谐振效应。调节振荡腔结构使射流冲击频率与煤的固有频率形成谐振时破煤效果显著提升,且谐振倍数越小,射流破煤效果越好,能够有效提高破煤效率。当煤的固有频率是25 Hz时,设置上游和下游喷嘴出口直径为2.5、3.0 mm,调节振荡腔直径、长度、角度分别为10 mm、3 mm、120°,射流冲击频率达到25051.83 Hz,是煤体固有频率的1002.0倍,与煤的固有频率形成谐振效应,有效提高了破煤效率。 展开更多
关键词 自激振荡脉冲SC-CO_(2)射流 自激振荡喷嘴 冲击频率调制 谐振破煤 煤层气开采
下载PDF
气举用脉冲进气自激振荡空气喷嘴数值模拟与试验研究
15
作者 唐川林 梁晶晶 +2 位作者 胡东 杨凤玲 程宏贵 《振动与冲击》 EI CSCD 北大核心 2024年第12期30-35,64,共7页
气举(气力泵)广泛应用在海洋采矿、钻孔水力开采、深水清淤等场合,越来越引起用户的重视。国内外学者对提升气举效率做了不少探索性研究,提出了脉冲进气是有效提升气举效率的途径之一,据此,提出一种亥姆霍兹式空气喷嘴,通过此喷嘴产生... 气举(气力泵)广泛应用在海洋采矿、钻孔水力开采、深水清淤等场合,越来越引起用户的重视。国内外学者对提升气举效率做了不少探索性研究,提出了脉冲进气是有效提升气举效率的途径之一,据此,提出一种亥姆霍兹式空气喷嘴,通过此喷嘴产生脉冲射流作为气举的进气方式,达到改善气举性能的目的。依据波涡理论,分析了自激振荡脉冲射流的产生机理;运用Fluent软件,对自激振荡空气喷嘴内流场进行了数值模拟,基于仿真结果进行试验研究。研究表明:结构参数和运行参数对射流特性影响显著。在入口压力为3 bar(1 bar=1×10^(5)Pa),腔长L=64 mm,频率为8 Hz情况下,压力脉动波动差值和幅值最大,产生的空气脉冲射流最显著;幅值随腔长的增大先上升后下降。数值模拟与试验结果一致。研究成果可为空气脉冲射流与气举一体化的工程应用提供参考,具有较高的工程应用价值。 展开更多
关键词 自激振荡脉冲射流 空气喷嘴 腔长 压力脉动
下载PDF
无反馈通道自激扫掠喷嘴工作特性
16
作者 王士奇 温泉 贾志刚 《推进技术》 EI CAS CSCD 北大核心 2024年第8期156-165,共10页
无反馈通道自激扫掠喷嘴仅在压力驱动下,通过两股射流在耦合腔内部的相互作用,就能在出口实现液柱喷射方向的自激发高频变化。为了探索此新型喷嘴在航空发动机内燃油喷射的应用潜力,本研究综合采用高速阴影成像法和二维数值模拟方法,研... 无反馈通道自激扫掠喷嘴仅在压力驱动下,通过两股射流在耦合腔内部的相互作用,就能在出口实现液柱喷射方向的自激发高频变化。为了探索此新型喷嘴在航空发动机内燃油喷射的应用潜力,本研究综合采用高速阴影成像法和二维数值模拟方法,研究了不同工作介质、不同缩比尺寸下,无反馈通道自激扫掠喷嘴的特征流速、工作频率、扫掠张角等参数随工作压降的响应变化情况。结果表明,无反馈通道自激扫掠喷嘴在较宽的工作压力范围(0.1~6 MPa)和特征尺寸范围(0.2~7 mm)内均能够实现稳定的自激发扫掠振荡喷射,产生30°以上的扫掠张角和5 kHz以上的振荡频率。无反馈通道自激扫掠喷嘴的扫掠张角基本不随压力和等比缩放特征尺寸而变化,但是其工作频率与其喉道处的特征流速成正比,与喉道宽度成反比,且其频率响应存在双模态现象。 展开更多
关键词 自激扫掠喷嘴 无反馈通道 流体振荡器 非定常数值模拟 高速阴影成像法
下载PDF
Characterization of vortex structures with self-excited oscillations based on Liutex-Omega vortex identification method
17
作者 Dong-dong Wang Zhao-hui Wang +2 位作者 Yi-wei Fan Xiao Sun Quan-jie Gao 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第1期95-111,共17页
The self-excited oscillation effect produces a continuous periodic pulsation without an external excitation source.It is widely used in fluid heat and mass transfer,cavitation and resistance reduction,and other relate... The self-excited oscillation effect produces a continuous periodic pulsation without an external excitation source.It is widely used in fluid heat and mass transfer,cavitation and resistance reduction,and other related fields.The self-excited oscillation effect is significantly influenced by the vortex structure created by the jet passing through the specially designed cavity.The flow field in a self-excited oscillation cavity is simulated in this paper using the large eddy simulation(LES)method.The Liutex-Omega([Math Processing Error])method is used to analyze the vortex structure’s evolution inside the cavity and is contrasted with the Q-criterion,the λ_(2)-criterion,and the Omega(Ω)method.The studies indicate that the[Math Processing Error]method is less sensitive to threshold selection compared with other methods,while it is more capable of identifying weak vortices.The change in cavity vortex structure can be devided into the four stages of vortex ring priming,growth and development,wall touch separation,and fragmentation.The turbulent energy generated by shear effect can promote the growth and development of the vortex ring structure and has an important influence on the formation of the vortex ring structure.The vortex strength reveals the interaction mechanism between the shear effect and vortex rings.The vortex core area illustrates that the small-scale vortices are mainly distributed inside the collision walls of the cavity and the downstream flow channel.The Liutex-omega method has unique advantages in analyzing the cavity flow field and revealing the mechanism of self-excited oscillations. 展开更多
关键词 Vortex identification Liutex-Omega([Math Processing Error]) self-excited oscillation large eddy simulation(LES)
原文传递
双腔室自振脉冲喷嘴空化射流数值模拟 被引量:3
18
作者 于海涛 徐艳 +1 位作者 刘海水 王佳祥 《机械科学与技术》 CSCD 北大核心 2023年第4期585-591,共7页
以风琴管喷嘴为基础,串联一个谐振腔形成双腔室自激振荡脉冲喷嘴,利用Fluent对其流场进行数值模拟,分析射流靶距、二级谐振腔腔长比、腔径比的变化对空化射流流场的影响。结果表明:谐振腔尺寸过大或过小均会影响涡环结构的形成,进而影... 以风琴管喷嘴为基础,串联一个谐振腔形成双腔室自激振荡脉冲喷嘴,利用Fluent对其流场进行数值模拟,分析射流靶距、二级谐振腔腔长比、腔径比的变化对空化射流流场的影响。结果表明:谐振腔尺寸过大或过小均会影响涡环结构的形成,进而影响空化效果。当谐振腔腔长比为0.77、腔径比为2.6时,谐振腔内涡环结构对称性好,轴向含气率高,射流速度较高,该结构利于清洗效率的提高。靶面滞止压力可对空化效果产生影响。当射流靶距较小时,在滞止压力的作用下二级谐振腔无涡环结构产生,轴向含气率较低。当靶距增加到18 mm时滞止压力产生的影响减小,轴向含气率明显提高,因此清洗靶距应至少为18 mm。但靶距的增加会降低射流到达靶面的动能,因此最佳靶距应取18 mm。 展开更多
关键词 空化 风琴管喷嘴 自激振荡 双腔室
下载PDF
新型自激扫掠喷嘴及其工作特性研究 被引量:1
19
作者 王士奇 温泉 《推进技术》 EI CAS CSCD 北大核心 2023年第10期102-111,共10页
针对涡轮、冲压发动机等空天动力装置对提高燃油雾化性能和油气掺混均匀度的迫切需求,提出一种内含扰流柱的新型自激扫掠喷嘴结构,能够实现0.5mm通径尺度下的自激发扫掠振荡液态燃料喷射。采用高速阴影成像、激光粒径测量等多种实验方法... 针对涡轮、冲压发动机等空天动力装置对提高燃油雾化性能和油气掺混均匀度的迫切需求,提出一种内含扰流柱的新型自激扫掠喷嘴结构,能够实现0.5mm通径尺度下的自激发扫掠振荡液态燃料喷射。采用高速阴影成像、激光粒径测量等多种实验方法,研究了0.5mm特征尺度下,采用水和航空煤油介质时,新型自激扫掠喷嘴的质量流量、工作频率、扫掠张角、雾化粒径等参数随工作压降的响应变化情况。结果表明,此新型自激扫掠喷嘴在较宽的工作压力(0.05~5MPa)内均能够实现稳定的自激发扫掠振荡,产生50°以上的扫掠张角和1600Hz以上的振荡频率,且其扫掠张角和表征工作频率的斯特劳哈尔数St在较宽工作压力范围内保持恒定;与圆孔直射式喷嘴相比,其流量系数提高了12%,雾化能力实现了数量级的提升。本研究初步验证了新型自激扫掠喷嘴在空天动力装置典型应用环境和工况下的应用可行性。 展开更多
关键词 自激扫掠喷嘴 流体振荡器 扰流柱 振荡频率 扫掠张角 高速阴影成像法 马尔文粒径测量
下载PDF
Self-excited oscillation of spinning solar sails utilizing solar radiation pressure 被引量:1
20
作者 Yuki Takao Osamu Mori Jun'ichiro Kawaguchi 《Astrodynamics》 CSCD 2020年第3期177-192,共16页
The present paper proposes a control method to excite spinning solar sail membranes for three-dimensional use.Using optical property switching,the input is given as the change in magnitude of the solar radiation press... The present paper proposes a control method to excite spinning solar sail membranes for three-dimensional use.Using optical property switching,the input is given as the change in magnitude of the solar radiation pressure.The resonance point of this system varies with the vibration state due to its nonlinearity and the change in equilibrium state.To deal with this,a state feedback control law that automatically tracks the resonance point is developed in the present study.The proposed method enables decentralized control of the actuators on the sail,each of which determines the control input independently using only the information of vibration state.The proposed method is validated using numerical simulations.The results show that the nonlinear system behaves differently from the linear system,and the vibration grows using the decentralized control regardless of resonance point variation. 展开更多
关键词 solar sail solar radiation pressure vibration mode self-excited oscillation mechanical resonance decentralized control
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部