Comparing with usual continuous jet nozzle, the self-excited oscillationpulsed jet nozzle SEOPJN) can make jet generate a higher peak of pressure and larger scouringvolume. And it can make jet increase the effective s...Comparing with usual continuous jet nozzle, the self-excited oscillationpulsed jet nozzle SEOPJN) can make jet generate a higher peak of pressure and larger scouringvolume. And it can make jet increase the effective standoff distance, too. The basic theories of theSEOPJN are introduced. Some experimental results are shown. According to the results, using tricornbits assembled the SEOPJN to drill oil well, the ROP increases by 8 percent approx 77 percent, andthe rates of the footage for tricorn bit increases by 6.7 percent approx 44.0 percent.展开更多
This paper presents the research on the dynamic mechanism of flocculation based on the characteristcs of turbulent flow. The shearing force and the centrifugal force transferred by the vortex are the main forces to ca...This paper presents the research on the dynamic mechanism of flocculation based on the characteristcs of turbulent flow. The shearing force and the centrifugal force transferred by the vortex are the main forces to cause collision of flocculated grains in water and the shearing force is the primary one. Based on this mechanism, a new type of self-excited oscillation pipeline flocculator is designed.展开更多
Strong asymmetrical vortices appear on the leeward of slender body at high angles of attack, which has very unfavorable effect on the stability and control of the aircraft. A method is developed to control the side fo...Strong asymmetrical vortices appear on the leeward of slender body at high angles of attack, which has very unfavorable effect on the stability and control of the aircraft. A method is developed to control the side force of slender body at high angles of attack, and is verified in wind tunnel. A thin-film triangular self-excited oscillation flag is fixed at the tip of the slender body model whose semi-apex angle is 10°. Side force is approximately linearly proportional to roll-setting angle of self-excited oscillation flag at high angles of attack, and the slop of fitting straight line obtained by the least square method is -0.158. The linear relationship between side force and roU-setting angle provides convenience for developing side force control law of slender body at high angles of attack. Experimental data shows that the side force coefficients vary linearly with roll-setting angles when a specific plastic self-excited oscillation flag is used as the control flag. The range of side force coefficient and roll-setting angle are, respectively, -3.2 to 3.0 and -20° to 20°. The device is simple, effective, and is of great potential in engineering application.展开更多
In order to obtain the impact frequency of resonant coal breaking by self-excited oscillation pulsed supercritical carbon dioxide(SC-CO_(2))jet,large eddy simulation was used to analyze the formation and development p...In order to obtain the impact frequency of resonant coal breaking by self-excited oscillation pulsed supercritical carbon dioxide(SC-CO_(2))jet,large eddy simulation was used to analyze the formation and development process of self-excited oscillation pulsed SC-CO_(2)jet,the variation of jet impact frequency in the nozzle and the free flow field,and the variation of jet impact frequency at different positions in the jet axis and under different cavity lengths.The test device of jet impact frequency was developed,and experiments were performed to verify the conclusions of the numerical simulations.The results show that the frequency of the self-excited oscillation pulsed SC-CO_(2)jet is different in the nozzle and the free flow field.In the nozzle,the frequency generated by the fluid disturbance is the same,and the jet frequency at the exit of the nozzle is consistent with that inside the nozzle.In the free flow field,due to the compressibility of CO_(2),the pressure,velocity and other parameters of SC-CO_(2)jets have obvious fluctuation patterns.This feature causes the impact frequency of the self-excited oscillation pulsed SC-CO_(2)jet to decrease gradually in the axis.Changing the cavity length allows the adjustment of the jet impact frequency in the free flow field by affecting the disturbance frequency of the self-excited oscillation pulsed SC-CO_(2)jet inside the nozzle.展开更多
In this paper, the basic theories of the Self-excited Oscillation Pulsed Jet Nozzle (SEOPJN) invented by the authors are introduced. Then, some experimental results are shown. According to the results, using tricorn b...In this paper, the basic theories of the Self-excited Oscillation Pulsed Jet Nozzle (SEOPJN) invented by the authors are introduced. Then, some experimental results are shown. According to the results, using tricorn bits assembled the SEOPJN to drill oil well, the rate of penetration (ROP) increases by 8% - 77%, and the rate of the footage for tricorn bit increases by 6.7% - 44%. Although the test was conducted in the water, good result was got in nature gas transportation. The volume of gas transportation could be increased by the Self-excited Oscillation Pulsed generator while the gas pressure drop could be decreased, since it significantly reduced the pressure loss during gas transportation.展开更多
Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsi- ble tube is developed by using a high transmitta...Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsi- ble tube is developed by using a high transmittance and low Young's modulus silicone rubber tube. The elastic tube is manufactured by the method of centrifugal casting in our laboratory. An optical method for recording the evolution of the cross-sectional areas at a certain position along the longitudinal direction of the tube is developed based on the technology of refractive index matching. With the transparent tube, the tube law is measured under the static no-flow condition. The cross section at the middle position of the tube transfers from a quasi-circular configuration to an ellipse, and then to a dumbell-shape as the chamber pressure is increased. During the self-excited oscillation, two periodic self-excited oscillating states and one transitional oscillating state are identified. They all belong to the LU mode. These different oscillating states are related to the initial cross-sectional shape of the tube caused by the difference of the downstream transmural pressure.展开更多
This paper presents a numerical study of the current self-excited oscillations during the opening of high voltage direct current(HVDC) metallic return transfer breaker(MRTB).The switching arc is simulated using the ma...This paper presents a numerical study of the current self-excited oscillations during the opening of high voltage direct current(HVDC) metallic return transfer breaker(MRTB).The switching arc is simulated using the magneto-hydrodynamics(MHD) theory coupled with the electric circuit variation.The simulation is proved accurate in simulating the current oscillation and the commutation process in MRTB by the good agreement between the calculated results and the experimental results,which are obtained on a MRTB prototype designed to break about 5 kA of DC current.Both kinds of the results show that the current oscillation starts at about 16.5 ms and the total arc time is about 24 ms with a commutation capacitor bank of 72 μF and an inductor of 173 μH.With a further analyze on how circuit parameters influence arc current oscillations,this study helps to improve the current interruption capability of MRTB.展开更多
A study of shock train self-excited oscillation in an isolator with background waves was implemented through a wind tunnel experiment.Dynamic pressure data were captured by high-frequency pressure measurements and the...A study of shock train self-excited oscillation in an isolator with background waves was implemented through a wind tunnel experiment.Dynamic pressure data were captured by high-frequency pressure measurements and the flow field was recorded by the high-speed Schlieren technique.The shock train structure was mostly asymmetrical during self-excited oscillation,regardless of its oscillation mode.We found that the pressure discontinuity caused by background waves was responsible for the asymmetry.On the wall where the pressure at the leading edge of the shock train was lower,a large separation region formed and the shock train deflected toward to the other wall.The oscillation mode of the shock train was related to the change of wall pressure in the oscillation range of its leading edge.The oscillation range and oscillation intensity of the shock train leading edge were affected by the wall pressure gradient induced by background waves.When located in a negative pressure gradient region,the oscillation of the leading edge strengthened;when located in a positive pressure gradient region,the oscillation weakened.To find out the cause of self-excited oscillation,correlation and phase analyses were performed.The results indicated that the instability of the separation region induced by the leading shock was the source of perturbation that caused self-excited oscillation,regardless of the oscillation mode of the shock train.展开更多
The present paper proposes a control method to excite spinning solar sail membranes for three-dimensional use.Using optical property switching,the input is given as the change in magnitude of the solar radiation press...The present paper proposes a control method to excite spinning solar sail membranes for three-dimensional use.Using optical property switching,the input is given as the change in magnitude of the solar radiation pressure.The resonance point of this system varies with the vibration state due to its nonlinearity and the change in equilibrium state.To deal with this,a state feedback control law that automatically tracks the resonance point is developed in the present study.The proposed method enables decentralized control of the actuators on the sail,each of which determines the control input independently using only the information of vibration state.The proposed method is validated using numerical simulations.The results show that the nonlinear system behaves differently from the linear system,and the vibration grows using the decentralized control regardless of resonance point variation.展开更多
The self-excited oscillation effect produces a continuous periodic pulsation without an external excitation source.It is widely used in fluid heat and mass transfer,cavitation and resistance reduction,and other relate...The self-excited oscillation effect produces a continuous periodic pulsation without an external excitation source.It is widely used in fluid heat and mass transfer,cavitation and resistance reduction,and other related fields.The self-excited oscillation effect is significantly influenced by the vortex structure created by the jet passing through the specially designed cavity.The flow field in a self-excited oscillation cavity is simulated in this paper using the large eddy simulation(LES)method.The Liutex-Omega([Math Processing Error])method is used to analyze the vortex structure’s evolution inside the cavity and is contrasted with the Q-criterion,the λ_(2)-criterion,and the Omega(Ω)method.The studies indicate that the[Math Processing Error]method is less sensitive to threshold selection compared with other methods,while it is more capable of identifying weak vortices.The change in cavity vortex structure can be devided into the four stages of vortex ring priming,growth and development,wall touch separation,and fragmentation.The turbulent energy generated by shear effect can promote the growth and development of the vortex ring structure and has an important influence on the formation of the vortex ring structure.The vortex strength reveals the interaction mechanism between the shear effect and vortex rings.The vortex core area illustrates that the small-scale vortices are mainly distributed inside the collision walls of the cavity and the downstream flow channel.The Liutex-omega method has unique advantages in analyzing the cavity flow field and revealing the mechanism of self-excited oscillations.展开更多
Self-excited oscillating jets(SOJ)are used in several practical applications.Their performances are significantly affected by structural parameters and the target distance.In this study,a geometric model of the SOJ no...Self-excited oscillating jets(SOJ)are used in several practical applications.Their performances are significantly affected by structural parameters and the target distance.In this study,a geometric model of the SOJ nozzle accounting for multiple structural parameters is introduced,then the related cavitation performances and the optimal target distance are investigated using a Large-Eddy Simulation(LES)approach.Results are also provided about an experiment,which was conducted to validate the simulation results.By analyzing the evolution of the vapor volume fraction at the nozzle outlet,a discussion is presented about the effect of the aforementioned structural parameters on the cavitation performances and the target distance.It is shown that the distribution of cavitation clouds at the outlet of the SOJ nozzle displays a non-monotonic trend(first increasing,then decreasing).Under working conditions with an inlet pressure of 4 MPa,a SOJ nozzle outlet/inlet diameter ratio(D_(1)/D_(2))of 1.2,and a chamber diameter ratio(D/L)close to 1.8,the nozzle outlet cavitation performance attains a maximum.The optimal structural parameters correspond to the optimal target distance,which is near 50 mm.The experiments have revealed that the SOJ nozzle with the above parameters displays a good cavitation erosion effect at the target distance of 50 mm,in satisfactory agreement with the numerical simulation results.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these ...In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these limit cycles are self-excited attractors while sixty percent of them are hidden attractors.Changing this new system to its forced version,we introduce a new chaotic system with an infinite number of coexisting strange attractors.We implement this system through field programmable gate arrays.展开更多
The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a...The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.展开更多
The vertically integrated emission rate,centroid altitude,peak emission rate,and peak height of the hydroxyl(OH)airglow were calculated from Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)/Sounding o...The vertically integrated emission rate,centroid altitude,peak emission rate,and peak height of the hydroxyl(OH)airglow were calculated from Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)observations to study the seasonal and interannual variations in the intensity and location of the OH emission.The emission rate is inversely proportional to the height of the emission,with the semiannual oscillation dominating at low latitudes and the annual oscillation dominating at higher latitudes.The OH emission is modulated by the quasibiennial oscillation at the equator,and the quasibiennial oscillation signal is weak at other latitudes.We represented the vertical transport of atomic oxygen by using atomic oxygen concentrations obtained from a global atmospheric model,the Specified Dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension simulations.Compared with the amplitudes of the migrating diurnal tide(DW1)calculated from temperature data observed by TIMED/SABER,we found that both the vertical transport of atomic oxygen and DW1 amplitudes in the equatorial region exhibit semiannual oscillation and quasibiennial oscillation,which have a strong correlation with the variations in the amplitude and phase of semiannual oscillation and quasibiennial oscillation in OH emission.It is likely that the DW1 affects the vertical transport of atomic oxygen that is involved in the reaction to produce O3,thus affecting the OH emission.We analyzed the relationship between OH emission and solar activity by using the solar radio flux at 10.7 cm as a proxy for solar activity.The results showed that the OH emission is well correlated with solar activity,and the modulation of OH emission by solar activity has a significant latitudinal variation.The small correlation between emission height and solar activity indicates that solar activity modulates OH emission mainly through chemical rather than dynamic processes.展开更多
This paper focuses on the characteristics of solutions of nonlinear oscillatory systems in the limit of very high oscillation energy, E;specifically, systems, in which the nonlinear driving force grows with energy muc...This paper focuses on the characteristics of solutions of nonlinear oscillatory systems in the limit of very high oscillation energy, E;specifically, systems, in which the nonlinear driving force grows with energy much faster for x(t) close to the turning point, a(E), than at any position, x(t), that is not too close to a(E). This behavior dominates important aspects of the solutions. It will be called “nonlinear violence”. In the vicinity of a turning point, the solution of a nonlinear oscillatory systems that is affected by nonlinear violence exhibits the characteristics of boundary-layer behavior (independently of whether the equation of motion of the system can or cannot be cast in the traditional form of a boundary-layer problem.): close to a(E), x(t) varies very rapidly over a short time interval (which vanishes for E → ∞). In traditional boundary layer systems this would be called the “inner” solution. Outside this interval, x(t) soon evolves into a moderate profile (e.g. linear in time, or constant)—the “outer” solution. In (1 + 1)-dimensional nonlinear energy-conserving oscillators, if the solution is reflection-invariant, nonlinear violence determines the characteristics of the whole solution. For large families of nonlinear oscillatory systems, as E → ∞, the solutions for x(t) tend to common, indistinguishable profiles, such as periodic saw-tooth profiles or step-functions. If such profiles are observed experimentally in high-energy oscillations, it may be difficult to decipher the dynamical equations that govern the motion. The solution of motion in a central field with a non-zero angular momentum exhibits extremely fast rotation around a turning point that is affected by nonlinear violence. This provides an example for the possibility of interesting phenomena in (1 + 2)-dimensional oscillatory systems.展开更多
In this paper, we study the second-order nonlinear differential systems of Liénard-type x˙=1a(x)[ h(y)−F(x) ], y˙=−a(x)g(x). Necessary and sufficient conditions to ensure that all nontrivial solutions are oscil...In this paper, we study the second-order nonlinear differential systems of Liénard-type x˙=1a(x)[ h(y)−F(x) ], y˙=−a(x)g(x). Necessary and sufficient conditions to ensure that all nontrivial solutions are oscillatory are established by using a new nonlinear integral inequality. Our results substantially extend and improve previous results known in the literature.展开更多
The kagome system has attracted great interest in condensed matter physics due to its unique structure that canhost various exotic states such as superconductivity(SC),charge density waves(CDWs)and nontrivial topologi...The kagome system has attracted great interest in condensed matter physics due to its unique structure that canhost various exotic states such as superconductivity(SC),charge density waves(CDWs)and nontrivial topological states.The topological semimetal RbTi_(3)Bi_(5)consisting of a Ti kagome layer shares a similar crystal structure to the topologicalcorrelated materials AV_(3)Sb_(5)(A=K,Rb,Cs)but without the absence of CDW and SC.Systematic de Haas-van Alphenoscillation measurements are performed on single crystals of RbTi_(3)Bi_(5)to pursue nontrivial topological physics and exoticstates.Combining this with theoretical calculations,the detailed Fermi surface topology and band structure are investigated.A two-dimensional Fermi pocket b is revealed with a light effective mass,consistent with the semimetal predictions.TheLandau fan diagram of RbTi_(3)Bi_(5)reveals a zero Berry phase for the b oscillation in contrast to that of CsTi_(3)Bi_(5).Theseresults suggest that kagome RbTi_(3)Bi_(5)is a good candidate for exploring nontrivial topological exotic states and topologicalcorrelated physics.展开更多
The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,prev...The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,previous studies have primarily concentrated on examining the combined impact of the contrasting phases of the AMO and IPO,which have been dominant since the advent of satellite observations in 1979.This study utilizes long-term reanalysis data to investigate the impact of four combinations of+AMO+IPO,–AMO–IPO,+AMO–IPO,and–AMO+IPO on Antarctic SAT over the past 115 years.The+AMO phase is characterized by a spatial mean temperature amplitude of up to 0.5℃over the North Atlantic Ocean,accompanied by positive sea surface temperature(SST)anomalies in the tropical eastern Pacific and negative SST anomalies in the extratropical-mid-latitude western Pacific,which are indicative of the+IPO phase.The Antarctic SAT exhibits contrasting spatial patterns during the+AMO+IPO and+AMO–IPO periods.However,during the–AMO+IPO period,apart from the Antarctic Peninsula and the vicinity of the Weddell Sea,the entire Antarctic region experiences a warming trend.The most pronounced signal in the SAT anomalies is observed during the austral autumn,whereas the combination of–AMO and–IPO exhibits the smallest magnitude across all the combinations.The wavetrain excited by the SST anomalies associated with the AMO and IPO induces upper-level and surface atmospheric circulation anomalies,which alter the SAT anomalies.Furthermore,downward longwave radiation anomalies related to anomalous cloud cover play a crucial role.In the future,if the phases of AMO and IPO were to reverse(AMO transitioning to a negative phase and IPO transitioning to a positive phase),Antarctica could potentially face more pronounced warming and accelerated melting compared to the current observations.展开更多
A 110-year ensemble simulation of an ocean general circulation model(OGCM)was analyzed to identify the modulation of salinity interdecadal variability on El Niño-Southern Oscillation(ENSO)amplitude in the tropica...A 110-year ensemble simulation of an ocean general circulation model(OGCM)was analyzed to identify the modulation of salinity interdecadal variability on El Niño-Southern Oscillation(ENSO)amplitude in the tropical Pacific during 1901-2010.The simulating results show that sea surface salinity(SSS)variation in the region exhibits notable and coherent interdecadal variability signal,which is closely associated with the Interdecadal Pacific Oscillation(IPO).As salinity increases or reduces,the SSS modulations on ENSO amplitude during its warm/cold events vary asymmetrically with positive/negative IPO phases.Physically,salinity interdecadal variability can enhance or reduce ENSO-related conditions in upper-ocean stratification,contributing noticeably to ENSO variability.Salinity anomalies associated with the mixed layer depth and barrier layer thickness can modulate ENSO amplitude during positive and negative IPO phases,resulting in the asymmetry of sea surface temperature(SST)anomaly in the tropical Pacific.During positive IPO phases,SSS interdecadal variability contributes positively to El Niño amplitude but negatively to La Niña amplitude by enhancing or reducing SSS interannual variability,and vice versa during negative IPO phases.Quantitatively,the results indicate that the modulation of the ENSO amplitude by the SSS interdecadal variability is 15%-28%during negative IPO phases and 30%-20%during positive IPO phases,respectively.Evidently,the SSS interdecadal variability associated with IPO and its modulation on ENSO amplitude in the tropical Pacific are among factors essentially contributing ENSO diversity.展开更多
基金National Natural Science Foundation of China (No.59979029)
文摘Comparing with usual continuous jet nozzle, the self-excited oscillationpulsed jet nozzle SEOPJN) can make jet generate a higher peak of pressure and larger scouringvolume. And it can make jet increase the effective standoff distance, too. The basic theories of theSEOPJN are introduced. Some experimental results are shown. According to the results, using tricornbits assembled the SEOPJN to drill oil well, the ROP increases by 8 percent approx 77 percent, andthe rates of the footage for tricorn bit increases by 6.7 percent approx 44.0 percent.
文摘This paper presents the research on the dynamic mechanism of flocculation based on the characteristcs of turbulent flow. The shearing force and the centrifugal force transferred by the vortex are the main forces to cause collision of flocculated grains in water and the shearing force is the primary one. Based on this mechanism, a new type of self-excited oscillation pipeline flocculator is designed.
基金supported by the ‘‘National Natural Science Foundation-Outstanding Youth Foundation’’
文摘Strong asymmetrical vortices appear on the leeward of slender body at high angles of attack, which has very unfavorable effect on the stability and control of the aircraft. A method is developed to control the side force of slender body at high angles of attack, and is verified in wind tunnel. A thin-film triangular self-excited oscillation flag is fixed at the tip of the slender body model whose semi-apex angle is 10°. Side force is approximately linearly proportional to roll-setting angle of self-excited oscillation flag at high angles of attack, and the slop of fitting straight line obtained by the least square method is -0.158. The linear relationship between side force and roU-setting angle provides convenience for developing side force control law of slender body at high angles of attack. Experimental data shows that the side force coefficients vary linearly with roll-setting angles when a specific plastic self-excited oscillation flag is used as the control flag. The range of side force coefficient and roll-setting angle are, respectively, -3.2 to 3.0 and -20° to 20°. The device is simple, effective, and is of great potential in engineering application.
基金Supported by National Natural Science Foundation of China(52174170,51974109)Basic Research Funds of Henan Polytechnic University(NSFRF220205)Strategic Consulting Research Project of Henan Research Institute of China Engineering Science and Technology Development Strategy(2022HENZDB03)。
文摘In order to obtain the impact frequency of resonant coal breaking by self-excited oscillation pulsed supercritical carbon dioxide(SC-CO_(2))jet,large eddy simulation was used to analyze the formation and development process of self-excited oscillation pulsed SC-CO_(2)jet,the variation of jet impact frequency in the nozzle and the free flow field,and the variation of jet impact frequency at different positions in the jet axis and under different cavity lengths.The test device of jet impact frequency was developed,and experiments were performed to verify the conclusions of the numerical simulations.The results show that the frequency of the self-excited oscillation pulsed SC-CO_(2)jet is different in the nozzle and the free flow field.In the nozzle,the frequency generated by the fluid disturbance is the same,and the jet frequency at the exit of the nozzle is consistent with that inside the nozzle.In the free flow field,due to the compressibility of CO_(2),the pressure,velocity and other parameters of SC-CO_(2)jets have obvious fluctuation patterns.This feature causes the impact frequency of the self-excited oscillation pulsed SC-CO_(2)jet to decrease gradually in the axis.Changing the cavity length allows the adjustment of the jet impact frequency in the free flow field by affecting the disturbance frequency of the self-excited oscillation pulsed SC-CO_(2)jet inside the nozzle.
文摘In this paper, the basic theories of the Self-excited Oscillation Pulsed Jet Nozzle (SEOPJN) invented by the authors are introduced. Then, some experimental results are shown. According to the results, using tricorn bits assembled the SEOPJN to drill oil well, the rate of penetration (ROP) increases by 8% - 77%, and the rate of the footage for tricorn bit increases by 6.7% - 44%. Although the test was conducted in the water, good result was got in nature gas transportation. The volume of gas transportation could be increased by the Self-excited Oscillation Pulsed generator while the gas pressure drop could be decreased, since it significantly reduced the pressure loss during gas transportation.
基金support from the National Nature Science Foundation of China (Grants 11372305 and 11002138)K.C. Wong Education Foundation for a Royal Society K.C. Wong Postdoctoral Fellowship
文摘Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsi- ble tube is developed by using a high transmittance and low Young's modulus silicone rubber tube. The elastic tube is manufactured by the method of centrifugal casting in our laboratory. An optical method for recording the evolution of the cross-sectional areas at a certain position along the longitudinal direction of the tube is developed based on the technology of refractive index matching. With the transparent tube, the tube law is measured under the static no-flow condition. The cross section at the middle position of the tube transfers from a quasi-circular configuration to an ellipse, and then to a dumbell-shape as the chamber pressure is increased. During the self-excited oscillation, two periodic self-excited oscillating states and one transitional oscillating state are identified. They all belong to the LU mode. These different oscillating states are related to the initial cross-sectional shape of the tube caused by the difference of the downstream transmural pressure.
基金Project supported by National Natural Science Foundation of China (51007072, 51177124), Doctoral Foundation of Ministry of Education of China (20110201130006, 20110201120069), New Century Excellent Talents Program from Ministry of Education of China.
文摘This paper presents a numerical study of the current self-excited oscillations during the opening of high voltage direct current(HVDC) metallic return transfer breaker(MRTB).The switching arc is simulated using the magneto-hydrodynamics(MHD) theory coupled with the electric circuit variation.The simulation is proved accurate in simulating the current oscillation and the commutation process in MRTB by the good agreement between the calculated results and the experimental results,which are obtained on a MRTB prototype designed to break about 5 kA of DC current.Both kinds of the results show that the current oscillation starts at about 16.5 ms and the total arc time is about 24 ms with a commutation capacitor bank of 72 μF and an inductor of 173 μH.With a further analyze on how circuit parameters influence arc current oscillations,this study helps to improve the current interruption capability of MRTB.
基金supported by the National Natural Science Foundation of China(Nos.11972139 and 51676204)。
文摘A study of shock train self-excited oscillation in an isolator with background waves was implemented through a wind tunnel experiment.Dynamic pressure data were captured by high-frequency pressure measurements and the flow field was recorded by the high-speed Schlieren technique.The shock train structure was mostly asymmetrical during self-excited oscillation,regardless of its oscillation mode.We found that the pressure discontinuity caused by background waves was responsible for the asymmetry.On the wall where the pressure at the leading edge of the shock train was lower,a large separation region formed and the shock train deflected toward to the other wall.The oscillation mode of the shock train was related to the change of wall pressure in the oscillation range of its leading edge.The oscillation range and oscillation intensity of the shock train leading edge were affected by the wall pressure gradient induced by background waves.When located in a negative pressure gradient region,the oscillation of the leading edge strengthened;when located in a positive pressure gradient region,the oscillation weakened.To find out the cause of self-excited oscillation,correlation and phase analyses were performed.The results indicated that the instability of the separation region induced by the leading shock was the source of perturbation that caused self-excited oscillation,regardless of the oscillation mode of the shock train.
基金The present study was supported by JSPS KAKENHI Grant Number JP18J11615.
文摘The present paper proposes a control method to excite spinning solar sail membranes for three-dimensional use.Using optical property switching,the input is given as the change in magnitude of the solar radiation pressure.The resonance point of this system varies with the vibration state due to its nonlinearity and the change in equilibrium state.To deal with this,a state feedback control law that automatically tracks the resonance point is developed in the present study.The proposed method enables decentralized control of the actuators on the sail,each of which determines the control input independently using only the information of vibration state.The proposed method is validated using numerical simulations.The results show that the nonlinear system behaves differently from the linear system,and the vibration grows using the decentralized control regardless of resonance point variation.
基金supported by the National Natural Science Foundation of China(Grant No.51875419)This work was supported by the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems,Zhe Jiang University(Grant No.GZKF-202122).
文摘The self-excited oscillation effect produces a continuous periodic pulsation without an external excitation source.It is widely used in fluid heat and mass transfer,cavitation and resistance reduction,and other related fields.The self-excited oscillation effect is significantly influenced by the vortex structure created by the jet passing through the specially designed cavity.The flow field in a self-excited oscillation cavity is simulated in this paper using the large eddy simulation(LES)method.The Liutex-Omega([Math Processing Error])method is used to analyze the vortex structure’s evolution inside the cavity and is contrasted with the Q-criterion,the λ_(2)-criterion,and the Omega(Ω)method.The studies indicate that the[Math Processing Error]method is less sensitive to threshold selection compared with other methods,while it is more capable of identifying weak vortices.The change in cavity vortex structure can be devided into the four stages of vortex ring priming,growth and development,wall touch separation,and fragmentation.The turbulent energy generated by shear effect can promote the growth and development of the vortex ring structure and has an important influence on the formation of the vortex ring structure.The vortex strength reveals the interaction mechanism between the shear effect and vortex rings.The vortex core area illustrates that the small-scale vortices are mainly distributed inside the collision walls of the cavity and the downstream flow channel.The Liutex-omega method has unique advantages in analyzing the cavity flow field and revealing the mechanism of self-excited oscillations.
基金supported by Key Projects of the Joint Fund of the National Natural Science Foundation of China(U20A20292)The Fundamental Research Funds for the Central Universities(No.JZ2021HGB0090)+2 种基金Key R&D Program of Zhenjiang City(GY2020015)Technology Support Plan(Research on Key Industrial Technologies)(TG202251)Shandong Province Science and Technology SMES Innovation Ability Improvement Project(2023TSGC0005).
文摘Self-excited oscillating jets(SOJ)are used in several practical applications.Their performances are significantly affected by structural parameters and the target distance.In this study,a geometric model of the SOJ nozzle accounting for multiple structural parameters is introduced,then the related cavitation performances and the optimal target distance are investigated using a Large-Eddy Simulation(LES)approach.Results are also provided about an experiment,which was conducted to validate the simulation results.By analyzing the evolution of the vapor volume fraction at the nozzle outlet,a discussion is presented about the effect of the aforementioned structural parameters on the cavitation performances and the target distance.It is shown that the distribution of cavitation clouds at the outlet of the SOJ nozzle displays a non-monotonic trend(first increasing,then decreasing).Under working conditions with an inlet pressure of 4 MPa,a SOJ nozzle outlet/inlet diameter ratio(D_(1)/D_(2))of 1.2,and a chamber diameter ratio(D/L)close to 1.8,the nozzle outlet cavitation performance attains a maximum.The optimal structural parameters correspond to the optimal target distance,which is near 50 mm.The experiments have revealed that the SOJ nozzle with the above parameters displays a good cavitation erosion effect at the target distance of 50 mm,in satisfactory agreement with the numerical simulation results.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
文摘In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these limit cycles are self-excited attractors while sixty percent of them are hidden attractors.Changing this new system to its forced version,we introduce a new chaotic system with an infinite number of coexisting strange attractors.We implement this system through field programmable gate arrays.
基金Project supported by the National Natural Science Foundation of China(No.12372005)。
文摘The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.
基金the National Natural Science Foundation of China(Grant Numbers 42374195 and 42188101)a fellowship from the China National Postdoctoral Program for Innovative Talents(Grant Number BX20230273).
文摘The vertically integrated emission rate,centroid altitude,peak emission rate,and peak height of the hydroxyl(OH)airglow were calculated from Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)observations to study the seasonal and interannual variations in the intensity and location of the OH emission.The emission rate is inversely proportional to the height of the emission,with the semiannual oscillation dominating at low latitudes and the annual oscillation dominating at higher latitudes.The OH emission is modulated by the quasibiennial oscillation at the equator,and the quasibiennial oscillation signal is weak at other latitudes.We represented the vertical transport of atomic oxygen by using atomic oxygen concentrations obtained from a global atmospheric model,the Specified Dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension simulations.Compared with the amplitudes of the migrating diurnal tide(DW1)calculated from temperature data observed by TIMED/SABER,we found that both the vertical transport of atomic oxygen and DW1 amplitudes in the equatorial region exhibit semiannual oscillation and quasibiennial oscillation,which have a strong correlation with the variations in the amplitude and phase of semiannual oscillation and quasibiennial oscillation in OH emission.It is likely that the DW1 affects the vertical transport of atomic oxygen that is involved in the reaction to produce O3,thus affecting the OH emission.We analyzed the relationship between OH emission and solar activity by using the solar radio flux at 10.7 cm as a proxy for solar activity.The results showed that the OH emission is well correlated with solar activity,and the modulation of OH emission by solar activity has a significant latitudinal variation.The small correlation between emission height and solar activity indicates that solar activity modulates OH emission mainly through chemical rather than dynamic processes.
文摘This paper focuses on the characteristics of solutions of nonlinear oscillatory systems in the limit of very high oscillation energy, E;specifically, systems, in which the nonlinear driving force grows with energy much faster for x(t) close to the turning point, a(E), than at any position, x(t), that is not too close to a(E). This behavior dominates important aspects of the solutions. It will be called “nonlinear violence”. In the vicinity of a turning point, the solution of a nonlinear oscillatory systems that is affected by nonlinear violence exhibits the characteristics of boundary-layer behavior (independently of whether the equation of motion of the system can or cannot be cast in the traditional form of a boundary-layer problem.): close to a(E), x(t) varies very rapidly over a short time interval (which vanishes for E → ∞). In traditional boundary layer systems this would be called the “inner” solution. Outside this interval, x(t) soon evolves into a moderate profile (e.g. linear in time, or constant)—the “outer” solution. In (1 + 1)-dimensional nonlinear energy-conserving oscillators, if the solution is reflection-invariant, nonlinear violence determines the characteristics of the whole solution. For large families of nonlinear oscillatory systems, as E → ∞, the solutions for x(t) tend to common, indistinguishable profiles, such as periodic saw-tooth profiles or step-functions. If such profiles are observed experimentally in high-energy oscillations, it may be difficult to decipher the dynamical equations that govern the motion. The solution of motion in a central field with a non-zero angular momentum exhibits extremely fast rotation around a turning point that is affected by nonlinear violence. This provides an example for the possibility of interesting phenomena in (1 + 2)-dimensional oscillatory systems.
文摘In this paper, we study the second-order nonlinear differential systems of Liénard-type x˙=1a(x)[ h(y)−F(x) ], y˙=−a(x)g(x). Necessary and sufficient conditions to ensure that all nontrivial solutions are oscillatory are established by using a new nonlinear integral inequality. Our results substantially extend and improve previous results known in the literature.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFA1406500)the National Natural Science Foundation of China(Grant Nos.12174454,U2130101,and 92165204)+2 种基金the Guangdong Basic and Applied Basic Research Funds(Grant Nos.2024B1515020040 and 2022A1515010035)Guangzhou Basic and Applied Basic Research Funds(Grant No.2024A04J6417)Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008).
文摘The kagome system has attracted great interest in condensed matter physics due to its unique structure that canhost various exotic states such as superconductivity(SC),charge density waves(CDWs)and nontrivial topological states.The topological semimetal RbTi_(3)Bi_(5)consisting of a Ti kagome layer shares a similar crystal structure to the topologicalcorrelated materials AV_(3)Sb_(5)(A=K,Rb,Cs)but without the absence of CDW and SC.Systematic de Haas-van Alphenoscillation measurements are performed on single crystals of RbTi_(3)Bi_(5)to pursue nontrivial topological physics and exoticstates.Combining this with theoretical calculations,the detailed Fermi surface topology and band structure are investigated.A two-dimensional Fermi pocket b is revealed with a light effective mass,consistent with the semimetal predictions.TheLandau fan diagram of RbTi_(3)Bi_(5)reveals a zero Berry phase for the b oscillation in contrast to that of CsTi_(3)Bi_(5).Theseresults suggest that kagome RbTi_(3)Bi_(5)is a good candidate for exploring nontrivial topological exotic states and topologicalcorrelated physics.
基金The National Natural Science Foundation of China under contract No.41976221the National Key Scientific and Technological Infrastructure Project“Earth System Numerical Simulation Facility”(EarthLab).
文摘The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,previous studies have primarily concentrated on examining the combined impact of the contrasting phases of the AMO and IPO,which have been dominant since the advent of satellite observations in 1979.This study utilizes long-term reanalysis data to investigate the impact of four combinations of+AMO+IPO,–AMO–IPO,+AMO–IPO,and–AMO+IPO on Antarctic SAT over the past 115 years.The+AMO phase is characterized by a spatial mean temperature amplitude of up to 0.5℃over the North Atlantic Ocean,accompanied by positive sea surface temperature(SST)anomalies in the tropical eastern Pacific and negative SST anomalies in the extratropical-mid-latitude western Pacific,which are indicative of the+IPO phase.The Antarctic SAT exhibits contrasting spatial patterns during the+AMO+IPO and+AMO–IPO periods.However,during the–AMO+IPO period,apart from the Antarctic Peninsula and the vicinity of the Weddell Sea,the entire Antarctic region experiences a warming trend.The most pronounced signal in the SAT anomalies is observed during the austral autumn,whereas the combination of–AMO and–IPO exhibits the smallest magnitude across all the combinations.The wavetrain excited by the SST anomalies associated with the AMO and IPO induces upper-level and surface atmospheric circulation anomalies,which alter the SAT anomalies.Furthermore,downward longwave radiation anomalies related to anomalous cloud cover play a crucial role.In the future,if the phases of AMO and IPO were to reverse(AMO transitioning to a negative phase and IPO transitioning to a positive phase),Antarctica could potentially face more pronounced warming and accelerated melting compared to the current observations.
基金Supported by the National Natural Science Foundation of China(No.42030410)the Laoshan Laboratory(No.LSKJ 202202403)supported by the Startup Foundation for Introducing Talent of NUIST。
文摘A 110-year ensemble simulation of an ocean general circulation model(OGCM)was analyzed to identify the modulation of salinity interdecadal variability on El Niño-Southern Oscillation(ENSO)amplitude in the tropical Pacific during 1901-2010.The simulating results show that sea surface salinity(SSS)variation in the region exhibits notable and coherent interdecadal variability signal,which is closely associated with the Interdecadal Pacific Oscillation(IPO).As salinity increases or reduces,the SSS modulations on ENSO amplitude during its warm/cold events vary asymmetrically with positive/negative IPO phases.Physically,salinity interdecadal variability can enhance or reduce ENSO-related conditions in upper-ocean stratification,contributing noticeably to ENSO variability.Salinity anomalies associated with the mixed layer depth and barrier layer thickness can modulate ENSO amplitude during positive and negative IPO phases,resulting in the asymmetry of sea surface temperature(SST)anomaly in the tropical Pacific.During positive IPO phases,SSS interdecadal variability contributes positively to El Niño amplitude but negatively to La Niña amplitude by enhancing or reducing SSS interannual variability,and vice versa during negative IPO phases.Quantitatively,the results indicate that the modulation of the ENSO amplitude by the SSS interdecadal variability is 15%-28%during negative IPO phases and 30%-20%during positive IPO phases,respectively.Evidently,the SSS interdecadal variability associated with IPO and its modulation on ENSO amplitude in the tropical Pacific are among factors essentially contributing ENSO diversity.