Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable...Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.展开更多
The insulation aging of cross-linked polyethylene(XLPE)cables is the main reason for the reduction in cable life.There is currently a lack of rapid and effective methods for detecting cable insulation defects in power...The insulation aging of cross-linked polyethylene(XLPE)cables is the main reason for the reduction in cable life.There is currently a lack of rapid and effective methods for detecting cable insulation defects in power-related sectors.To this end,this paper presents a method for identifying insulation defects in XLPE cables based on deep learning algorithms.First,the principle of the harmonic method for detecting cable insulation defects is introduced.Second,the ANSYS software is used to simulate the cable insulation layer containing bubbles,protrusions,and water tree defects,and the effects of each type of defect on the magnetic field strength and eddy loss current of the cable insulation layer are analyzed.Then,a total of 10 characteristic quantities of the total harmonic content and 2nd to 10th harmonic currents are constructed to establish a database of cable insulation defects.Finally,the deep learning algorithm,long short-term memory(LSTM),is used to accurately identify the types of insulation defects in cables.The results indicate that the LSTM algorithm can effectively diagnose and identify insulation defects in cables with an accuracy of 95.83%.展开更多
We study the local density of states (LDOS) for electrons scattering off the line edge of an atomic step defect on the surface of a three-dimensional (3D) topological insulator (TI) and the line edge of a finite...We study the local density of states (LDOS) for electrons scattering off the line edge of an atomic step defect on the surface of a three-dimensional (3D) topological insulator (TI) and the line edge of a finite 3D TI, where the front surface and side surface meet with different Fermi velocities, respectively. By using a S-function potential to model the edges, we find that the bound states existed along the step line edge significantly contribute to the LDOS near the edge, but do not modify the exponential behavior away from it. In addition, the power-law decaying behavior for LDOS oscillation away from the step is understood from the spin rotation for surface states scattering off the step defect with magnitude depending on the strength of the potential. Furthermore, the electron refraction and total reflection analogous to optics occurred at the line edge where two surfaces meet with different Fermi velocities, which leads to the LDOS decaying behavior in the greater Fermi velocity side similar to that for a step line edge. However, in the smaller velocity side the LDOS shows a different decaying behavior as x-1/2, and the wavevector of LDOS oscillation is no longer equal to the diameter of the constant energy contour of surface band, but is sensitively dependent on the ratio of the two Fermi velocities. These effects may be verified by STM measurement with high precision.展开更多
气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法...气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法。首先,基于真型GIS设备振动模拟平台试验研究测点位置与缺陷类型对振动行为的影响特性;然后,联合统计分析、模态分解、尺度变换方法提出机械振动信号整体与局部信息关注的复合参数分析方法,引入主成分分析开展多测点振动信息的特征层融合降维;最后,提出改进放缩权重的Dempster-Shafer(DS)证据理论和Bagging投票机制的强/弱基学习器决策层融合机制,联合构建多层融合振动数据分析的GIS设备机械缺陷诊断模型。结果表明:不同类型机械缺陷信号的响应幅值、特征频点和畸变程度存在显著差异,复合特征参量大小及分散程度各不相同;同时,测点位置对缺陷信号的复合振动特征参量的表现形式及分布区间也具有一定影响;基于多层融合数据分析的诊断模型实现缺陷有效识别,辨识准确率为98.66%,相比单一分类器诊断效果提升5.83%。该文可为GIS设备机械缺陷诊断方法提供有价值的参考。展开更多
基金State Grid Jiangsu Electric Power Co.,Ltd.of the Science and Technology Project(Grant No.J2022004).
文摘Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.
基金supported by the technology project of the State Grid Shanxi Electric Power Company.The name of the project is“Research and Application of Cable electrification diagnosis Technology based on Harmonic method”(5205C02000GL).
文摘The insulation aging of cross-linked polyethylene(XLPE)cables is the main reason for the reduction in cable life.There is currently a lack of rapid and effective methods for detecting cable insulation defects in power-related sectors.To this end,this paper presents a method for identifying insulation defects in XLPE cables based on deep learning algorithms.First,the principle of the harmonic method for detecting cable insulation defects is introduced.Second,the ANSYS software is used to simulate the cable insulation layer containing bubbles,protrusions,and water tree defects,and the effects of each type of defect on the magnetic field strength and eddy loss current of the cable insulation layer are analyzed.Then,a total of 10 characteristic quantities of the total harmonic content and 2nd to 10th harmonic currents are constructed to establish a database of cable insulation defects.Finally,the deep learning algorithm,long short-term memory(LSTM),is used to accurately identify the types of insulation defects in cables.The results indicate that the LSTM algorithm can effectively diagnose and identify insulation defects in cables with an accuracy of 95.83%.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274108)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20114306110008)the Hunan Provincial Innovation Foundation for Postgraduates(Grant No.CX2012B204)
文摘We study the local density of states (LDOS) for electrons scattering off the line edge of an atomic step defect on the surface of a three-dimensional (3D) topological insulator (TI) and the line edge of a finite 3D TI, where the front surface and side surface meet with different Fermi velocities, respectively. By using a S-function potential to model the edges, we find that the bound states existed along the step line edge significantly contribute to the LDOS near the edge, but do not modify the exponential behavior away from it. In addition, the power-law decaying behavior for LDOS oscillation away from the step is understood from the spin rotation for surface states scattering off the step defect with magnitude depending on the strength of the potential. Furthermore, the electron refraction and total reflection analogous to optics occurred at the line edge where two surfaces meet with different Fermi velocities, which leads to the LDOS decaying behavior in the greater Fermi velocity side similar to that for a step line edge. However, in the smaller velocity side the LDOS shows a different decaying behavior as x-1/2, and the wavevector of LDOS oscillation is no longer equal to the diameter of the constant energy contour of surface band, but is sensitively dependent on the ratio of the two Fermi velocities. These effects may be verified by STM measurement with high precision.
文摘气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法。首先,基于真型GIS设备振动模拟平台试验研究测点位置与缺陷类型对振动行为的影响特性;然后,联合统计分析、模态分解、尺度变换方法提出机械振动信号整体与局部信息关注的复合参数分析方法,引入主成分分析开展多测点振动信息的特征层融合降维;最后,提出改进放缩权重的Dempster-Shafer(DS)证据理论和Bagging投票机制的强/弱基学习器决策层融合机制,联合构建多层融合振动数据分析的GIS设备机械缺陷诊断模型。结果表明:不同类型机械缺陷信号的响应幅值、特征频点和畸变程度存在显著差异,复合特征参量大小及分散程度各不相同;同时,测点位置对缺陷信号的复合振动特征参量的表现形式及分布区间也具有一定影响;基于多层融合数据分析的诊断模型实现缺陷有效识别,辨识准确率为98.66%,相比单一分类器诊断效果提升5.83%。该文可为GIS设备机械缺陷诊断方法提供有价值的参考。