High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typicall...Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ...We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
Smart chiral liquid crystal elastomers are a class of soft photonic crystals with periodic nanostructures.There are two kinds of chiral liquid crystal elastomers with structural colors:cholesteric liquid crystal elast...Smart chiral liquid crystal elastomers are a class of soft photonic crystals with periodic nanostructures.There are two kinds of chiral liquid crystal elastomers with structural colors:cholesteric liquid crystal elastomers with a one-dimensional helical nanostructure and blue-phase liquid crystal elastomers with a three-dimensional photonic crystal nanostructure.The self-assembled nanostructure of chiral liquid crystal elastomers can be dynamically controlled under external stimulation,and the reflected color can be adjusted throughout the visible light range.Along with the development of innovative material systems and cutting-edge manufacturing technologies,researchers have proposed diverse strategies to design and synthesize chiral liquid crystal elastomers and have thoroughly investigated their properties and potential applications.Here,we provide a systematic review of the progress in the design and fabrication of smart chiral liquid crystal elastomers,focusing on the cholesteric liquid crystal elastomers via surface-enforced alignment,bar coating,3D printing,anisotropic deswelling methods as well as the three-dimensional selfassembly of blue-phase liquid crystal elastomers without additional alignment.Smart chiral liquid crystal elastomers are able to respond quickly to external stimuli and have a wide range of applications in areas such as adaptive optics,color-changing camouflage,soft robotics,and information encryption.This review concludes with a perspective on the opportunities and challenges for the future development of smart chiral liquid crystal elastomers.展开更多
A method to promote aluminum hydroxide crystal growth through pickling Al(OH)_(3)as seed in the ammonia system was proposed to overcome these defects.The experimental results show that,under the conditions of pickling...A method to promote aluminum hydroxide crystal growth through pickling Al(OH)_(3)as seed in the ammonia system was proposed to overcome these defects.The experimental results show that,under the conditions of pickling time of 15 min,the acid concentration of 10%,the addition of 70 g/L pickling-Al(OH)_(3)seed,and the coarse granular Al(OH)_(3)products(d0.5=85.667)can be obtained.The characterization results show that the phase of the product is gibbsite,consistent with the seed.Moreover,the steps and ledges can be formed on pickling Al(OH)_(3)seed surface under the ammonia system,effectively promoting crystal growth.During crystal growth,the roughness of the crystal surface was first increased and then decreased,and the lamellar structure was deposited on the crystal seed surface.The final particles are approximately round,the surface is compact and dense.The growth of the product is surface reaction controlled.In addition,the content of the AlO_(6)unit is increased and contributed to Al(OH)_(3)crystal growth.展开更多
Kagome magnets were predicted to be a good platform to investigate correlated topology band structure,Chern quantum phase,and geometrical frustration due to their unique lattice geometry.Here we reported single crysta...Kagome magnets were predicted to be a good platform to investigate correlated topology band structure,Chern quantum phase,and geometrical frustration due to their unique lattice geometry.Here we reported single crystal growth of 166-type kagome magnetic materials,including HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6),GdMn_(6)Sn_(6)and GdV_(6)Sn_(6),by using the flux method with Sn as the flux.Among them,HfMn_(6)Sn_(6)and ZrMn_(6)Sn_(6)single crystals were grown for the first time.X-ray diffraction measurements reveal that all four samples crystallize in HfFe6Ge6-type hexagonal structure with space group P6/mmm.All samples show metallic behavior from temperature dependence of resistivity measurements,and the dominant carrier is hole,except for GdV6Sn6 which is electron dominated.All samples have magnetic order with different transition temperatures,HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6)and GdV_(6)Sn_(6)are antiferromagnetic with TN of 541 K,466 K and 4 K respectively,while GdMn_(6)Sn_(6)is ferrimagnetic with the critical temperature of about 470 K.This study will enrich the research platform of magnetic kagome materials and help explore the novel quantum phenomena in these interesting materials.The dataset of specific crystal structure parameters for HfMn_(6)Sn_(6)are available in Science Data Bank,with the link.展开更多
Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cool...Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.展开更多
ObjectiveThis study aimed to analyze the correlation between urinary crystals and urinary calculi.MethodsClinical data, including urinary crystal types, were collected from 237 patients with urinary calculi. The detec...ObjectiveThis study aimed to analyze the correlation between urinary crystals and urinary calculi.MethodsClinical data, including urinary crystal types, were collected from 237 patients with urinary calculi. The detection rate of urine crystals and their correlation with stone composition were analyzed. The receiver operating characteristic curve analysis was used to determine the best cut-off value for predicting stone formation risk based on calcium oxalate crystals in urine.ResultsCalcium oxalate was the most common component in 237 patients. Among them, 201 (84.81%) patients had stones containing calcium oxalate. In these patients, calcium oxalate crystals were detected in 45.77% (92/201) of cases. In different groups of calcium oxalate stones, calcium oxalate crystals accounted for more than 90% of the total number of crystals detected in each group. The detection rate of calcium oxalate crystals was higher in first-time stone formers than in recurrent patients. The receiver operating characteristic curve analysis suggested a cut-off value of 110 crystals/μL for predicting stone formation, validated with 65 patients and 100 normal people.ConclusionCalcium oxalate crystals in urine can predict the composition of calcium oxalate stones and indicate a higher risk of stone formation when the number exceeds 110 crystals/μL. This non-invasive method may guide clinical treatment and prevention strategies.展开更多
In order to study the action mechanism of Sacha Inchi polypeptide in liquid crystal emulsion,oil-in-water liquid crystal emulsions with Sacha Inchi fermented polypeptide as the active component were prepared.The micro...In order to study the action mechanism of Sacha Inchi polypeptide in liquid crystal emulsion,oil-in-water liquid crystal emulsions with Sacha Inchi fermented polypeptide as the active component were prepared.The microstructures,particle sizes,stabilities,thermodynamic properties,and rheological properties of liquid crystal emulsions with different concentrations of the fermentation products were observed by Polarizing microscope,Particle size meter,Thermogravimetric differential thermal synchronous measurement system,and Rheometer,respectively.The results showed that the average particle size of fermented peptide liquid crystal emulsion was(25.7±2.8)μm,and the liquid crystal structure was complete and stable.The content of bound water and liquid crystal in the emulsion with 1%Sacha Inchi polypeptide were higher than those in the blank emulsion and the emulsions with 3%and 5%Sacha Inchi polypeptide.Rheological results indicated that the viscosity of liquid crystal emulsion with the change curve of shear rate registered the shear thinning phenomenon,which belongs to non-Newtonian fluid.The hysteresis area,energy storage modulus,and loss modulus of the 1%additive amount of liquid crystal emulsion were larger than those of the blank emulsion and the emulsions with 3%and 5%Sacha Inchi polypeptide,indicating greater thixotropy and stronger shear resistance.The hydrophilic amino acid residues of the peptide in the 1%additive amount of the emulsion were combined with the water phase,while the hydrophobic amino acid residues of the peptide entered the oil phase,which formed a viscoelastic film at the oil-water interface,so that the liquid crystal emulsion had a more stable gel network structure.展开更多
Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline ...Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.展开更多
In this study,transparent K_(2)O-Al_(2)O_(3)-SiO_(2)(KAS)glass-ceramics with leucite as the main crystalline phase were prepared by melting-quench method and two-step heat treatment.The effects of SiO_(2)/Al_(2)O_(3) ...In this study,transparent K_(2)O-Al_(2)O_(3)-SiO_(2)(KAS)glass-ceramics with leucite as the main crystalline phase were prepared by melting-quench method and two-step heat treatment.The effects of SiO_(2)/Al_(2)O_(3) ratio and heat treatment on crystallization and mechanical properties were studied.The crystallization kinetics and X-Ray Diffraction(XRD)results showed that SiO_(2)/Al_(2)O_(3) ratio and heat treatment system had a direct impact on the crystallization behavior of potassium aluminosilicate glass-ceramics.When heat-treated at 680℃/2 h and 780℃/1 h,cracks generated on the surface of the sample with the addition of SiO_(2)/Al_(2)O_(3)=4.8(in mol)due to the huge difference in the coefficient of thermal expansion between glass matrix and surface.When the addition of SiO_(2)/Al_(2)O_(3)(in mol)was 4,the sample with leucite as the main crystalline phase showed an excellent fracture toughness(1.46 MPa·m^(0.5))after the heat treatment of 680℃/2 h and 780℃/5 h.And there was a phase transformation from kaliophilite to leucite.The crystalline phases of the sample heat-treated at 680℃/8 h and 780℃/1 h were leucite and kaliophilite,which resulted in the visible light transmittance of 63%and the fracture toughness of 0.91 MPa·m^(0.5).Furthermore,after the heat treatment of 680℃/2 h and 780℃/5 h,the main crystalline phase of the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol)was still kaliophilite.Because leucite only grows on the surface of the sample and is hard to grow inward,it is hard to achieve the bulk crystallization of leucite in the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol).展开更多
Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and t...Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride.展开更多
In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical mod...In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification.展开更多
The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop directio...The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin.展开更多
A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic...A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone.This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes.By adjusting the magnitude of the glide dislocation the edge bandgaps,the bandgap of the guided-modes at the boundary of the Brillouin zone,can be further adjusted.The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities,achieving single-mode guided-bands with relatively flat dispersion relationship.In addition,there exists acousto-optic interaction in the cavity constructed by the glide plane.The proposed waveguide has potential applications in the design of novel optomechanical devices.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO,the Samsung Research Funding&Incubation Center for Future Technology grant(SRFC-IT1901-52)funded by Samsung Electronicsthe National Research Foundation(NRF)grants(NRF-2022M3C1A3081312,NRF-2022M3H4A1A-02074314,NRF-2022M3H4A1A02046445,NRF-2021M3H4A1A04086357,NRF-2019R1A5A8080290,RS-2024-00356928,RS-2023-00283667)funded by the Ministry of Science and ICT of the Korean governmentthe Korea Evaluation Institute of Industrial Technology(KEIT)grant(No.1415185027/20019169,Alchemist project)funded by the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government.H.Kim and J.Kim acknowledge the POSTECH Alchemist fellowship,the Asan Foundation Biomedical Science fellowship,and Presidential Science fellowship funded by the MSIT of the Korean government.
文摘Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
文摘We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金supported by the National Key R&D Program of China(2023YFB3812800 and 2022YFB3805702)the National Natural Science Foundation of China(No.52173181,51973155 and 52203143)+1 种基金Key Program of the National Natural Science Foundation of China(No.52130303)Tianjin Science Fund for Distinguished Young Scholars(22JCJQJC00060).
文摘Smart chiral liquid crystal elastomers are a class of soft photonic crystals with periodic nanostructures.There are two kinds of chiral liquid crystal elastomers with structural colors:cholesteric liquid crystal elastomers with a one-dimensional helical nanostructure and blue-phase liquid crystal elastomers with a three-dimensional photonic crystal nanostructure.The self-assembled nanostructure of chiral liquid crystal elastomers can be dynamically controlled under external stimulation,and the reflected color can be adjusted throughout the visible light range.Along with the development of innovative material systems and cutting-edge manufacturing technologies,researchers have proposed diverse strategies to design and synthesize chiral liquid crystal elastomers and have thoroughly investigated their properties and potential applications.Here,we provide a systematic review of the progress in the design and fabrication of smart chiral liquid crystal elastomers,focusing on the cholesteric liquid crystal elastomers via surface-enforced alignment,bar coating,3D printing,anisotropic deswelling methods as well as the three-dimensional selfassembly of blue-phase liquid crystal elastomers without additional alignment.Smart chiral liquid crystal elastomers are able to respond quickly to external stimuli and have a wide range of applications in areas such as adaptive optics,color-changing camouflage,soft robotics,and information encryption.This review concludes with a perspective on the opportunities and challenges for the future development of smart chiral liquid crystal elastomers.
基金Funded by the National Natural Science Foundation of China(No.51974188)the Liaoning Revitalization Talents Program(No.XLYC2008014)。
文摘A method to promote aluminum hydroxide crystal growth through pickling Al(OH)_(3)as seed in the ammonia system was proposed to overcome these defects.The experimental results show that,under the conditions of pickling time of 15 min,the acid concentration of 10%,the addition of 70 g/L pickling-Al(OH)_(3)seed,and the coarse granular Al(OH)_(3)products(d0.5=85.667)can be obtained.The characterization results show that the phase of the product is gibbsite,consistent with the seed.Moreover,the steps and ledges can be formed on pickling Al(OH)_(3)seed surface under the ammonia system,effectively promoting crystal growth.During crystal growth,the roughness of the crystal surface was first increased and then decreased,and the lamellar structure was deposited on the crystal seed surface.The final particles are approximately round,the surface is compact and dense.The growth of the product is surface reaction controlled.In addition,the content of the AlO_(6)unit is increased and contributed to Al(OH)_(3)crystal growth.
基金the Beijing Natural Science Founda-tion(Grant No.Z210006)the National Key Research and De-velopment Program of China(Grant Nos.2022YFA1403400 and 2020YFA0308800)the Beijing National Labora-tory for Condensed Matter Physics(Grant No.2023BNL-CMPKF007).
文摘Kagome magnets were predicted to be a good platform to investigate correlated topology band structure,Chern quantum phase,and geometrical frustration due to their unique lattice geometry.Here we reported single crystal growth of 166-type kagome magnetic materials,including HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6),GdMn_(6)Sn_(6)and GdV_(6)Sn_(6),by using the flux method with Sn as the flux.Among them,HfMn_(6)Sn_(6)and ZrMn_(6)Sn_(6)single crystals were grown for the first time.X-ray diffraction measurements reveal that all four samples crystallize in HfFe6Ge6-type hexagonal structure with space group P6/mmm.All samples show metallic behavior from temperature dependence of resistivity measurements,and the dominant carrier is hole,except for GdV6Sn6 which is electron dominated.All samples have magnetic order with different transition temperatures,HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6)and GdV_(6)Sn_(6)are antiferromagnetic with TN of 541 K,466 K and 4 K respectively,while GdMn_(6)Sn_(6)is ferrimagnetic with the critical temperature of about 470 K.This study will enrich the research platform of magnetic kagome materials and help explore the novel quantum phenomena in these interesting materials.The dataset of specific crystal structure parameters for HfMn_(6)Sn_(6)are available in Science Data Bank,with the link.
基金financially supported by a grant provided by Mitsubishi Heavy Industries。
文摘Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.
基金supported by the National Natural Science Foundation of China(No.82071638 to Song N).
文摘ObjectiveThis study aimed to analyze the correlation between urinary crystals and urinary calculi.MethodsClinical data, including urinary crystal types, were collected from 237 patients with urinary calculi. The detection rate of urine crystals and their correlation with stone composition were analyzed. The receiver operating characteristic curve analysis was used to determine the best cut-off value for predicting stone formation risk based on calcium oxalate crystals in urine.ResultsCalcium oxalate was the most common component in 237 patients. Among them, 201 (84.81%) patients had stones containing calcium oxalate. In these patients, calcium oxalate crystals were detected in 45.77% (92/201) of cases. In different groups of calcium oxalate stones, calcium oxalate crystals accounted for more than 90% of the total number of crystals detected in each group. The detection rate of calcium oxalate crystals was higher in first-time stone formers than in recurrent patients. The receiver operating characteristic curve analysis suggested a cut-off value of 110 crystals/μL for predicting stone formation, validated with 65 patients and 100 normal people.ConclusionCalcium oxalate crystals in urine can predict the composition of calcium oxalate stones and indicate a higher risk of stone formation when the number exceeds 110 crystals/μL. This non-invasive method may guide clinical treatment and prevention strategies.
文摘In order to study the action mechanism of Sacha Inchi polypeptide in liquid crystal emulsion,oil-in-water liquid crystal emulsions with Sacha Inchi fermented polypeptide as the active component were prepared.The microstructures,particle sizes,stabilities,thermodynamic properties,and rheological properties of liquid crystal emulsions with different concentrations of the fermentation products were observed by Polarizing microscope,Particle size meter,Thermogravimetric differential thermal synchronous measurement system,and Rheometer,respectively.The results showed that the average particle size of fermented peptide liquid crystal emulsion was(25.7±2.8)μm,and the liquid crystal structure was complete and stable.The content of bound water and liquid crystal in the emulsion with 1%Sacha Inchi polypeptide were higher than those in the blank emulsion and the emulsions with 3%and 5%Sacha Inchi polypeptide.Rheological results indicated that the viscosity of liquid crystal emulsion with the change curve of shear rate registered the shear thinning phenomenon,which belongs to non-Newtonian fluid.The hysteresis area,energy storage modulus,and loss modulus of the 1%additive amount of liquid crystal emulsion were larger than those of the blank emulsion and the emulsions with 3%and 5%Sacha Inchi polypeptide,indicating greater thixotropy and stronger shear resistance.The hydrophilic amino acid residues of the peptide in the 1%additive amount of the emulsion were combined with the water phase,while the hydrophobic amino acid residues of the peptide entered the oil phase,which formed a viscoelastic film at the oil-water interface,so that the liquid crystal emulsion had a more stable gel network structure.
文摘Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.
基金Funded by State Key Laboratory of Silicate Materials for Ar-chitectures(Wuhan University of Technology)(No.2011DA105356)。
文摘In this study,transparent K_(2)O-Al_(2)O_(3)-SiO_(2)(KAS)glass-ceramics with leucite as the main crystalline phase were prepared by melting-quench method and two-step heat treatment.The effects of SiO_(2)/Al_(2)O_(3) ratio and heat treatment on crystallization and mechanical properties were studied.The crystallization kinetics and X-Ray Diffraction(XRD)results showed that SiO_(2)/Al_(2)O_(3) ratio and heat treatment system had a direct impact on the crystallization behavior of potassium aluminosilicate glass-ceramics.When heat-treated at 680℃/2 h and 780℃/1 h,cracks generated on the surface of the sample with the addition of SiO_(2)/Al_(2)O_(3)=4.8(in mol)due to the huge difference in the coefficient of thermal expansion between glass matrix and surface.When the addition of SiO_(2)/Al_(2)O_(3)(in mol)was 4,the sample with leucite as the main crystalline phase showed an excellent fracture toughness(1.46 MPa·m^(0.5))after the heat treatment of 680℃/2 h and 780℃/5 h.And there was a phase transformation from kaliophilite to leucite.The crystalline phases of the sample heat-treated at 680℃/8 h and 780℃/1 h were leucite and kaliophilite,which resulted in the visible light transmittance of 63%and the fracture toughness of 0.91 MPa·m^(0.5).Furthermore,after the heat treatment of 680℃/2 h and 780℃/5 h,the main crystalline phase of the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol)was still kaliophilite.Because leucite only grows on the surface of the sample and is hard to grow inward,it is hard to achieve the bulk crystallization of leucite in the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol).
基金Funded by the National Natural Science Foundation of China(No.52172287)the National Key Research and Development Program of China(No.2021YFA0715700)。
文摘Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride.
基金supported by the National Natural Science Foundation of China(Grant Nos.62204112,12174240,and 11874253)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220774).
文摘In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification.
基金supports from the National Research Foundation of Korea funded by the Ministry of Education (No. 2018R1A6A1A03024509, NRF-2023R1A2C1005121)
文摘The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin.
基金Project supported by the National Natural Science Foundation of China(Grant No.12064025)the Natural Science Foundation of Jiangxi Province,China(Grant No.20212ACB202006)+1 种基金the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province,China(Grant No.20204BCJ22012)the Open Project of the Key Laboratory of Radar Imaging and Microwave Photonic Technology of the Education Ministry of China.
文摘A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone.This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes.By adjusting the magnitude of the glide dislocation the edge bandgaps,the bandgap of the guided-modes at the boundary of the Brillouin zone,can be further adjusted.The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities,achieving single-mode guided-bands with relatively flat dispersion relationship.In addition,there exists acousto-optic interaction in the cavity constructed by the glide plane.The proposed waveguide has potential applications in the design of novel optomechanical devices.