Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara...Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.展开更多
Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation....Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.展开更多
Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is ...Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting.展开更多
In the context of a room-and-pillar mining gob in Shanxi province in China,this paper numerically investigates the stress distribution and deformation rules of roadway surrounding rocks at various locations of residua...In the context of a room-and-pillar mining gob in Shanxi province in China,this paper numerically investigates the stress distribution and deformation rules of roadway surrounding rocks at various locations of residual coal pillars in room-and-pillar mining gobs using software FLAC3 D.It is found that the concentrated stress beneath coal pillars distributes in a shape of ellipse.A reasonable roadway layout is then proposed.In this design,it is indicated that roadways should be designed to avoid the supporting zones of pillars with increasing compression and take into account the roof falling and crushing in the upper gob.According to the surrounding rock deformation characteristics and mining roadway locations as well as the supporting principles of timely support,rock reinforcing,piecewise management and suiting local conditions,a new asymmetric shield supporting plan is proposed.The field surveying results show that this supporting plan can effectively control the roadway rock deformation,thus guarantee the safe and smooth construction of roadways.展开更多
In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to s...In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to solve the aforementioned problems,the roadway backfilling mining technology is developed and the joint bearing mechanism of coal pillar and backfilling body is presented in this paper.The mechanical model of bearing system of coal pillar and backfilling body is established,by analyzing the basic characteristics of overlying strata deformation in roadway backfilling mining technology.According to the Ritz method in energy variation principle,the elastic solution expression of coal pillar deformation is deduced in roadway backfilling mining technology.Based on elastic-viscoelastic correspondence principle,combining with the burgers rheological constitutive model and Laplace transform theory,the viscoelastic solution expression of coal pillar deformation is obtained in roadway backfilling mining technology.By analyzing the compressive mechanical property of backfilling body,the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained.The example analysis indicates that the time is 140 days.The results can be treated as an important basis for theoretical research and process design in roadway backfilling mining technology.展开更多
There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ...There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ultimate equilibrium (the bearing stress in the coal-mass is less than its ultimate bearing stress). To ana- lyze the bearing characteristics of a coal pillar in the state of limit equilibrium and guide the design of pillar width, we established a mechanical analytical model of the non-ultimate equilibrium zone in the coal-mass on the goal-side combined with the limit equilibrium theory as well as adopting the methods of theory analysis and mechanical analysis based on the assumption of a state of non-ultimate equilibrium. The width correction coeffident of the limit equilibrium zone has been given. The influence of mining depth, stress concentration coefficient of the surrounding rock, the non-limit strength of the coal-mass and stability of the coal rock interface has been studied. On this basis, we have confirmed that when the width ofa longwall mining face roadway protection coal pillar is between 11.6 m and 13.16 m in No. 4 coal seam of Xinrui coal mine in Lvliang in Shanxi province the elastic core region in the coal pillar can be assured and the roadway will be located in the area of lower stress which is outside the peak stress. So the revised width of the limit eauilibrium zone is more oractical.展开更多
基金Financial support for this work was provided by the National Natural Science Foundation of China(Nos.51474005,51004002)
文摘Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.
基金the National Natural Science Foundation of China(No.50774077)the State Key Laboratory of Coal Resources and Safe Mining Autonomous Study Subject Foundation of China(No.SKLCRSM08X04)+2 种基金the National Basic Research Program of China,the National Excellence Doctor Degree Dissertation Special Foundation of China(No.200760)the New Century Talent Support Program of the Ministry of Education of China(No.NCET-06-0475)the Youth Scientific Research Foundation of China University of Mining & Technology(No. 2008A002)
文摘Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.
基金supported by the National Natural Science Foundation of China(52204164)Fundamental Research Funds for the Central Universities(2022XJSB03)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001),which are gratefully acknowledged.
文摘Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting.
基金the National 973 Programs of China (No.2014CB046905)the National Natural Science Foundation of China(Nos.51274191 and 51404245)the Doctoral Fund of Ministry of Education(No.20130095110018)
文摘In the context of a room-and-pillar mining gob in Shanxi province in China,this paper numerically investigates the stress distribution and deformation rules of roadway surrounding rocks at various locations of residual coal pillars in room-and-pillar mining gobs using software FLAC3 D.It is found that the concentrated stress beneath coal pillars distributes in a shape of ellipse.A reasonable roadway layout is then proposed.In this design,it is indicated that roadways should be designed to avoid the supporting zones of pillars with increasing compression and take into account the roof falling and crushing in the upper gob.According to the surrounding rock deformation characteristics and mining roadway locations as well as the supporting principles of timely support,rock reinforcing,piecewise management and suiting local conditions,a new asymmetric shield supporting plan is proposed.The field surveying results show that this supporting plan can effectively control the roadway rock deformation,thus guarantee the safe and smooth construction of roadways.
基金This work was supported by the National Natural Science Foundation of China(51504081,51774110,51508166,U1404527)the Science and Technology Breakthrough Project by Henan Province(162102210221,162102310427)+1 种基金the Foundation for Higher Education Key Research Project by Henan Province(15A440013)the Ph.D.Programs Foundation of Henan Polytechnic University(B2018-65,B2018-4,B2016-67).
文摘In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to solve the aforementioned problems,the roadway backfilling mining technology is developed and the joint bearing mechanism of coal pillar and backfilling body is presented in this paper.The mechanical model of bearing system of coal pillar and backfilling body is established,by analyzing the basic characteristics of overlying strata deformation in roadway backfilling mining technology.According to the Ritz method in energy variation principle,the elastic solution expression of coal pillar deformation is deduced in roadway backfilling mining technology.Based on elastic-viscoelastic correspondence principle,combining with the burgers rheological constitutive model and Laplace transform theory,the viscoelastic solution expression of coal pillar deformation is obtained in roadway backfilling mining technology.By analyzing the compressive mechanical property of backfilling body,the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained.The example analysis indicates that the time is 140 days.The results can be treated as an important basis for theoretical research and process design in roadway backfilling mining technology.
基金supported by the National Programs for Fundamental Research and Development (No. 2013CB227900)the National Natural Science Foundation of China (Nos. 51204166, 51174195 and 51474209)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ultimate equilibrium (the bearing stress in the coal-mass is less than its ultimate bearing stress). To ana- lyze the bearing characteristics of a coal pillar in the state of limit equilibrium and guide the design of pillar width, we established a mechanical analytical model of the non-ultimate equilibrium zone in the coal-mass on the goal-side combined with the limit equilibrium theory as well as adopting the methods of theory analysis and mechanical analysis based on the assumption of a state of non-ultimate equilibrium. The width correction coeffident of the limit equilibrium zone has been given. The influence of mining depth, stress concentration coefficient of the surrounding rock, the non-limit strength of the coal-mass and stability of the coal rock interface has been studied. On this basis, we have confirmed that when the width ofa longwall mining face roadway protection coal pillar is between 11.6 m and 13.16 m in No. 4 coal seam of Xinrui coal mine in Lvliang in Shanxi province the elastic core region in the coal pillar can be assured and the roadway will be located in the area of lower stress which is outside the peak stress. So the revised width of the limit eauilibrium zone is more oractical.