期刊文献+
共找到205,318篇文章
< 1 2 250 >
每页显示 20 50 100
Self-healing mechanism of composite coatings obtained by phosphating and silicate sol post-sealing 被引量:8
1
作者 林碧兰 卢锦堂 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2723-2728,共6页
Silicate sol post-treatment was applied to form a complete composite coating on the phosphated zinc layer. The chemical compositions of the coatings were investigated using XPS. The coated samples were firstly scratch... Silicate sol post-treatment was applied to form a complete composite coating on the phosphated zinc layer. The chemical compositions of the coatings were investigated using XPS. The coated samples were firstly scratched and then exposed to the neutral salt spray(NSS) chamber for different time. The microstructure and chemical compositions of the scratches were studied using SEM and EDS. And the non-scratched coated samples were compared. The self-healing mechanism of the composite coatings was discussed. The results show that during corrosion, the self-healing ions in composite coatings dissolve, diffuse and transfer to the scratches or the defects, and then recombine with Zn2+ to form insoluble compound, which deposits and covers the exposed zinc. The corrosion products on the scratches contain silicon, phosphorous, oxygen, chloride and zinc, and they are compact, fine, needle and flake, effectively inhibiting the corrosion formation and expansion of the exposed zinc layer. The composite coatings have good self-healing ability. 展开更多
关键词 corrosion self-healing phosphate coatings SILICATE zinc
下载PDF
Advancements and Challenges in Organic–Inorganic Composite Solid Electrolytes for All‑Solid‑State Lithium Batteries
2
作者 Xueyan Zhang Shichao Cheng +4 位作者 Chuankai Fu Geping Yin Liguang Wang Yongmin Wu Hua Huo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期46-97,共52页
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ... To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs. 展开更多
关键词 composite solid electrolytes Inorganic filler Interfacial stability Li-ion conduction mechanism Characterization techniques
下载PDF
A 3D printable self-healing composite conductive polymer for sensitive temperature detection 被引量:3
3
作者 Mengnan He Yan Zhao +1 位作者 Yunqi Liu Dacheng Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第3期826-830,共5页
Recent development of self-healing material has attracted tremendous attention,owing to its biomimetic ability to restore structure and functionality when encountering damages.Here,we develop a threedimensional(3D)pri... Recent development of self-healing material has attracted tremendous attention,owing to its biomimetic ability to restore structure and functionality when encountering damages.Here,we develop a threedimensional(3D)printable self-healing composite conductive polymer by mixing hydrogen-bond-based supramolecular polymer with low-cost carbon black.It has a room-temperature self-healing capability in both conductivity and mechanical property,while its shear-thinning behavior enables fabrication of a self-healable circuit by 3D printing technology.As an application,the circuit shows an excellent temperature-dependent behavior of the resistance,indicating its great potential fo r practical application in the artificial intelligence field. 展开更多
关键词 composite CONDUCTIVE POLYMER self-healing 3D PRINTING Temperature detection ELECTRONIC device
原文传递
Highly Stretchable,Compressible,Adhesive,Conductive Self-healing Composite Hydrogels with Sensor Capacity 被引量:3
4
作者 Ji-Jun Wang Qiang Zhang +1 位作者 Xing-Xiang Ji Li-Bin Liu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第11期1221-1229,I0007,共10页
The design and fabrication of conductive hydrogels with high stretchability,compressibility,self-healing properties and good adhesion remains a significant challenge.We have fabricated composite hydrogels by random po... The design and fabrication of conductive hydrogels with high stretchability,compressibility,self-healing properties and good adhesion remains a significant challenge.We have fabricated composite hydrogels by random polymerization of acrylic acid(AA)and dopamine(DA)in the presence of multi-walled carbon nanotubes(MWCNTs).The π-π interaction between DA and MWCNTs makes MWCNTs stably and homogenously dispersed in water.The fabricated PAA-PDA/CNT composite hydrogels possess relatively high mechanical strength(maximum Youngzs modulus:800 kPa)and can be stretched to 1280%strain and compressed to 80%strain.The multiple hydrogen bonding formed between functional groups of PAA-PDA and MWCNTs can effectively dissipate energy and quickly achieve self-healing.The composite hydrogels also show good adhesion and can easily adhere to various inorganic or organic surfaces.In addition,the hydrogel reveals stable strain sensitivity and can be used as skin sensors. 展开更多
关键词 HYDROGELS self-healing Conductivity SENSOR
原文传递
Self-Healing MXene-and Graphene-Based Composites:Properties and Applications 被引量:5
5
作者 Atefeh Zarepour Sepideh Ahmadi +2 位作者 Navid Rabiee Ali Zarrabi Siavash Iravani 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期165-192,共28页
Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing n... Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing novel self-healing graphene-and MXenebased composites with enhanced sensitivity,stretchability,and flexibility as well as improved electrical conductivity,healing efficacy,mechanical properties,and energy conversion efficacy.These composites with self-healing properties can be employed in the field of wearable sensors,supercapacitors,anticorrosive coatings,electromagnetic interference shielding,electronic-skin,soft robotics,etc.However,it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability,suitable adhesiveness,ideal durability,high stretchability,immediate self-healing responsibility,and outstanding electromagnetic features.Besides,optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated.MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area,which are important to evolve biomedical and sensing applications.However,flexibility and stretchability are important criteria that need to be improved for their future applications.Herein,the most recent advancements pertaining to the applications and properties of self-healing graphene-and MXene-based composites are deliberated,focusing on crucial challenges and future perspectives. 展开更多
关键词 MXenes GRAPHENE self-healing materials Electromagnetic interference shielding Wearable sensors
下载PDF
Characteristics of Self-Healing Microcapsules for Cementitious Composites 被引量:1
6
作者 MAO Qianjin FENG Xiaojuan +4 位作者 LIANG Peng WANG Rui WANG Ziming CUI Suping LAN Mingzhang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1108-1112,共5页
Urea formaldehyde/epoxy resin microcapsules were prepared by an in situ polymerization method and the effect of emulsifier on the syntheses process of the microcapsules was discussed. The surface morphology of the mic... Urea formaldehyde/epoxy resin microcapsules were prepared by an in situ polymerization method and the effect of emulsifier on the syntheses process of the microcapsules was discussed. The surface morphology of the microcapsules was observed by optical microscopy and scanning electron microscopy(SEM). Chemical structure was characterized by Fourier transform infrared spectroscopy(FTIR). Thermal stability was obtained using simultaneous thermal analysis(STA). The microcapsules were composed of urea-formaldehyde resin shell and epoxy resin core. Emulsifier played an important role in the polymerization process when the core material was packed by pre-polymer, so the effects of different emulsifiers(OP-10, SDS and SDBS) were discussed respectively. Results showed that the particle size of the microcapsules was uniform when SDBS as an emulsifier. Microcapsules showed good thermal stability below 240 ℃ and the initial decomposition temperature of the microcapsules was 265 ℃. The core materials released after microcapsules rupturing, which could be proven by the images of SEM. When implanted in cementitious composites, complete shape of microcapsules and good interface between microcapsules and cement specimen substrate could also be observed. 展开更多
关键词 cementitious composites self-healing materials microcapsule
下载PDF
Self-healing Performance of Composite Coatings Prepared by Phosphating and Cerium Nitrate Post-sealing 被引量:3
7
作者 林碧兰 LU Jintang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期813-817,共5页
The phosphated and cerium nitrate post-sealed galvanized steel was firstly scratched to expose zinc layer and then placed in neutral salt spray (NSS) chamber for different durations. The microstructure and compositi... The phosphated and cerium nitrate post-sealed galvanized steel was firstly scratched to expose zinc layer and then placed in neutral salt spray (NSS) chamber for different durations. The microstructure and compositions of the scratches were investigated using SEM and EDS. The phases of the corrosion products were examined through XRD. The self-healing mechanism of the composite coatings was discussed. The experimental results show that the composite coatings have an excellent corrosion resistance. The corrosion products increase with corrosion time and finally cover the whole scratch. They contain phosphorous, cerium, oxygen, chloride and zinc, and are fine needle and exceedingly compact. The composite coatings are favorable self-healing. During corrosion, the self-healing ions such as Ce3+, Ce4+, PO43-, Zn2+ in the composite coatings were dissolved, migrated, recombined, and covered the exposed zinc, impeding zinc corrosion. The self-healing process of the scratches on the composite coatings can be divided into three stages, about 2 h, 4 h, and 24 h, respectively. 展开更多
关键词 zinc phosphate coating self-healing corrosion resistance cerium nitrate
下载PDF
Microstructure and electrolysis behavior of self-healing Cu-Ni-Fe composite inert anodes for aluminum electrowinning 被引量:2
8
作者 Ying Liu Yong-an Zhang +2 位作者 Wei Wang Dong-sheng Li Jun-yi Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第10期1208-1216,共9页
The microstructure evolution and electrolysis behavior of(Cu_(52)Ni_(30)Fe_(18))–x Ni Fe_2O_4(x=40wt%,50wt%,60wt%,and 70wt%)composite inert anodes for aluminum electrowinning were studied.Ni Fe_2O_4 was synthesized b... The microstructure evolution and electrolysis behavior of(Cu_(52)Ni_(30)Fe_(18))–x Ni Fe_2O_4(x=40wt%,50wt%,60wt%,and 70wt%)composite inert anodes for aluminum electrowinning were studied.Ni Fe_2O_4 was synthesized by solid-state reaction at 950°C.The dense anode blocks were prepared by ball-milling followed by sintering under a N_2 atmosphere.The phase evolution of the anodes after sintering was determined by scanning electron microscopy and energy-dispersive X-ray spectroscopy.The results indicate that a substitution reaction between Fe in the alloy phase and Ni in the oxide phase occurs during the sintering process.The samples were also examined as inert anodes for aluminum electrowinning in the low-temperature KF–NaF–AlF_3 molten electrolyte for 24 h.The cell voltage during electrolysis and the corrosion scale on the anodes were analyzed.The results confirm that the scale has a self-repairing function because of the synergistic reaction between the alloy phase with Fe added and the oxide phase.The estimated wear rate of the(Cu_(52)Ni_(30)Fe_(18))–50Ni Fe_2O_4 composite anode is 2.02 cm·a^(-1). 展开更多
关键词 ALUMINUM ELECTROLYSIS inert ANODE composites ALUMINUM ELECTROWINNING corrosion
下载PDF
Evaluation of Self-Healing Efficiency of Microcapsule-Based Self-Healing Cementitious Composites Based on Acoustic Emission
9
作者 Wenfeng Hao Hao Hao +1 位作者 Humaira Kanwal Shiping Jiang 《Journal of Renewable Materials》 SCIE EI 2023年第4期1687-1697,共11页
Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-b... Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-based composites is one of the difficulties that limits the self-healing technology.This paper attempts to characterize the self-healing efficiency of microcapsule self-healing cement-based composites by acoustic emission(AE)parameters,which provides a reference for the evaluation of microcapsule self-healing technology.Firstly,a kind of self-healing microcapsules were prepared,and the microcapsules were added into the cement-based composites to prepare the compression samples.Then,the specimen with certain pre damage was obtained by compression test.Secondly,the damaged samples were divided into two groups.One group was directly used for compression tests to obtain the damage failure process.The other group was put into water for healing for 30 days,and then compression tests were carried out to study the influence of self-healing on the compression failure process.During the experiments,the AE signals were collected and the AE characteristics were extracted for the evaluation of self-healing efficiency.The results show that the compression pre damage test can trigger the microcapsule,and the compression strength of the self-healing sample is improved.The failure mechanism of microcapsule selfhealing cement-based composites can be revealed by the AE parameters during compression,and the self-healing efficiency can be quantitatively characterized by AE hits.The research results of this paper provide experimental reference and technical support for the mechanical property test and healing efficiency evaluation of microcapsule self-healing cement-based composites. 展开更多
关键词 self-healing efficiency cementitious composites MICROCAPSULES acoustic emission compressive property
下载PDF
Fabrication of Polymer Magnetic Nanocomposites Containing Carbon Nanoparticles Doped with Cobalt Nanoclusters and Study Their Conductivity, Self-Healing and Adhesion Properties
10
作者 G. I. Маmniashvili D. I. Gventsadze +1 位作者 L. N. Rukhadze L. A. Maisuradze 《World Journal of Condensed Matter Physics》 2020年第3期118-134,共17页
The technology of fabrication of polymer nanocomposites on basis of carbon nanoparticles doped with cobalt clusters, synthesized by original Chemical Vapore Deposition (CVD) technology developed by authors, was elabor... The technology of fabrication of polymer nanocomposites on basis of carbon nanoparticles doped with cobalt clusters, synthesized by original Chemical Vapore Deposition (CVD) technology developed by authors, was elaborated. Carbon shells provide both the protection of ferromagnetic impurities from aggressive environment and new unique properties to the hybride nanostructures. The self-assembling of magnetic clusters coated by carbon shells presents just such example which could be used in the contemporary materials, for example, in strong magnets, analytic instruments (nuclear magnetic resonance tomographs) and nanosensors. Their good conductivity, self-healing and adhesion properties were demonstrated by applying the combined action of temperature, pressure, steady and alternating magnetic fields to stimulate diffusion of magnetic nanoparticles in direction to defect sites. Due to these properties fabricated magnetic polymer nanocomposites could have perspective for potential. 展开更多
关键词 Magnetic Carbon Nanopowder Polymer composite Stimulated Diffusion self-healing SELF-ORGANIZATION Resistance
下载PDF
BaTiO_(3)/Polyurethane Dielectric Composites with Diels-Alder Bond for Improved Self-Healing Properties
11
作者 unlong Yao Wei Nie +6 位作者 Zhengguang Sun Huan Yang Yu Guan Lin Gao Xueliang Jiang Mujie Guo Chuanxi Xiong 《Journal of Renewable Materials》 SCIE EI 2022年第9期2355-2364,共10页
In general,self-healing dielectric composites are mainly composed of polar hydrogen bonds,which have high hydrophilicity and are unsuitable for humid environment.Dielectric composite with Diels-Alder(D-A)bond contains... In general,self-healing dielectric composites are mainly composed of polar hydrogen bonds,which have high hydrophilicity and are unsuitable for humid environment.Dielectric composite with Diels-Alder(D-A)bond contains covalent bonds,it can be adopted as an efficient self-healing material.Here,we construct self-healing barium titanate(BT)/polyurethane(PU)dielectric composites by adopting PU with D-A bond as matrix(BT/PU-DA).The prepared 10%BT/PU-DA composite exhibits superior self-healing ability than that of PUDA.Moreover,its dielectric constant can reach 9.3 with a loss of only 0.04 at 1000 Hz and maintain 93%repair efficiency of tensile strength.The experimental analysis suggests the introduction of D-A bond can enhance the thermostability and self-healing ability of BT/PU-DA composite.In addition,the incorporation of BT nanoparticles and D-A bond in the self-healing composite contributes to the lower dielectric loss and excellent tensile strength after healing.The adopted strategy is a promising and facile approach to develop highly efficient selfhealing dielectric material,which will be conducive to reuse and sustainable development of the electronic packaging material in aqueous medium or wet environment. 展开更多
关键词 Diels-Alder bond self-healing dielectric properties tensile strength POLYURETHANE
下载PDF
Self-healing Au/PVDF-HFP composite ionic gel for flexible underwater pressure sensor
12
作者 Ruiyang Yin Linlin Li +1 位作者 Lili Wang Zheng Lou 《Journal of Semiconductors》 EI CAS CSCD 2023年第3期76-94,共19页
Ionic gels can be potentially used in wearable devices owing to their high humidity resistance and non-volatility.However,the applicability of existing ionic gel pressure sensors is limited by their low sensitivity.Th... Ionic gels can be potentially used in wearable devices owing to their high humidity resistance and non-volatility.However,the applicability of existing ionic gel pressure sensors is limited by their low sensitivity.Therefore,it is very import-ant to develop an ionic gel pressure sensor with high sensitivity and a wide pressure detection range without sacrificing mechan-ical stretchability and self-healing ability.Herein,we report an effective strategy for developing pressure sensors based on ion-ic gel composites consisting of high-molecular-weight polymers,ionic liquids,and Au nanoparticles.The resulting capacitive pressure sensors exhibit high pressure sensitivity,fast response,and excellent self-healing properties.The sensors composed of highly hydrophobic polymers and ionic liquids can be used to track underwater movements,demonstrating broad application prospects in human motion state monitoring and underwater mechanical operations. 展开更多
关键词 ionic gel pressure sensor high performance underwater operation self-healing
下载PDF
Self-healing of engineered cementitious composites at simulated summer conditions
13
作者 LEPECH M.D 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期267-273,共7页
Self-healing of engineered cementitious composites(ECC) subjected to a cyclic drying and wetting regime simulated summer outdoor environment was investigated in this paper.Uniaxial tension tests were used to generate ... Self-healing of engineered cementitious composites(ECC) subjected to a cyclic drying and wetting regime simulated summer outdoor environment was investigated in this paper.Uniaxial tension tests were used to generate multiple cracks in ECC specimens deformed to varying tensile strains.To quantify self-healing,resonant frequency measurements were conducted throughout drying-wetting cycles followed by tensile testing of self-healing ECC specimens.It was found that through self-healing the resonant frequency of ECC can recover 81% to 90% of initial values while showing a distinct rebound in stiffness of cracked ECC after self-healing.For specimens pre-loaded to high levels of strain between 2% and 3%,the tensile strain after self-healing can recover from 1.8% to 2.2%.Also,the effects of temperature during cyclic regime can lead to an increase in the ultimate strength of the material while slightly decreasing the strain-hardening capacity of ECC due to further hydration of unreacted cement and fly ash. 展开更多
关键词 ECC self-healing cyclic drying and wetting resonance frequency tensile stress tensile strain
下载PDF
Mechanical reliable,NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life 被引量:1
14
作者 Tengjia Gao Na Li +4 位作者 Yang Yang Jing Li Peng Ji Yunlong Zhou Jianxiong Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期63-73,共11页
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras... Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span. 展开更多
关键词 Flexible zinc ion supercapacitor Hydrogel electrolyte self-healing Anti-freezing
下载PDF
High performance photodegradation resistant PVA@TiO_(2)/carboxyl-PES self-healing reactive ultrafiltration membrane 被引量:1
15
作者 Yu Liang Yuanfang Fan +5 位作者 Zhongmin Su Mingxin Huo Xia Yang Hongliang Huo Chi Wang Zhi Geng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期31-39,共9页
The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Never... The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Nevertheless,the self-cleaning process may accelerate membrane aging.Addressing these concerns,we present an innovative design concept for composite self-healing materials based on self-cleaning UF membranes.To begin,TiO_(2)nanoparticles were incorporated into the polymer molecular structure via molecular design,resulting in the synthesis of TiO_(2)/carboxyl-polyether sulfone(PES)hybrid materials.Subsequently,the nonsolvent-induced phase inversion technique was employed to prepare a novel of UF membrane.Lastly,a polyvinyl alcohol(PVA)hydrogel coating was applied to the hybrid UF membrane surface to create PVA@TiO_(2)/carboxyl-PES self-healing reactive UF membranes.By establishing a covalent bond,the TiO_(2)nanoparticles were effectively and uniformly dispersed within the UF membrane,leading to exceptional self-cleaning properties.Furthermore,the water-absorbing and swelling properties of PVA hydrogel,along with its capacity to form hydrogen bonds with water molecules,resulted in UF membranes with improved hydrophilicity and active self-healing abilities.The results demonstrated that the water contact angle of PVA@5%TiO_(2)/carboxyl-PES UF membrane was 43.1°.Following a 1-h exposure to simulated solar exposure,the water flux recovery ratio increased from 48.16%to 81.03%.Moreover,even after undergoing five cycles of 12-h simulated sunlight exposure,the UF membranes exhibited a consistent retention rate of over 97%,thus fully demonstrating their exceptional self-cleaning,antifouling,and selfhealing capabilities.We anticipate that the self-healing reactive UF membrane system will serve as a pioneering and comprehensive solution for the self-cleaning antifouling challenges encountered in UF membranes while also effectively mitigating the aging effects of reactive UF membranes. 展开更多
关键词 Ultrafiltration membrane SELF-CLEANING self-healing Poly(aryl ether sulfone)
下载PDF
Ti_(3)C_(2)T_(x) MXene/carbon composites for advanced supercapacitors:Synthesis,progress,and perspectives 被引量:2
16
作者 Yanqing Cai Xinggang Chen +4 位作者 Ying Xu Yalin Zhang Huijun Liu Hongjuan Zhang Jing Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期113-142,共30页
MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivi... MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivity,good hydrophilicity,and tunable terminations.Among various types of MXenes,Ti_(3)C_(2)T_(x) is the most widely studied for use in capacitive energy storage applications,especially in supercapacitors(SCs).However,the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites.To overcome such challenges,carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties.This review introduces the common strategies used for synthesizing Ti_(3)C_(2)T_(x),followed by a comprehensive overview of recent developments in Ti_(3)C_(2)T_(x)/carbon composites as electrode materials for SCs.Ti_(3)C_(2)T_(x)/carbon composites are categorized based on the dimensions of carbons,including 0D carbon dots,1D carbon nanotubes and fibers,2D graphene,and 3D carbon materials(activated carbon,polymer-derived carbon,etc.).Finally,this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs. 展开更多
关键词 electrochemical performance MXene/carbon composites SUPERCAPACITORS
下载PDF
Laser‑Induced and MOF‑Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature 被引量:2
17
作者 Hyeongtae Lim Hyeokjin Kwon +2 位作者 Hongki Kang Jae Eun Jang Hyuk‑Jun Kwon 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期210-220,共11页
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing... Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices. 展开更多
关键词 Metal-organic frameworks Metal oxide Carbon composite LASER Gas sensor
下载PDF
Impact resistance performance and optimization of the sand-EPE composite cushion in rock sheds 被引量:2
18
作者 YU Bingxin ZHOU Xiaojun +2 位作者 TANG Jianhui ZHANG Yujin ZHANG Yuefeng 《Journal of Mountain Science》 SCIE CSCD 2024年第2期676-689,共14页
Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion wa... Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate. 展开更多
关键词 ROCKFALL Rock shed Impact composite cushion Buffering effect Dynamic response
下载PDF
12.6μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries 被引量:3
19
作者 Zheng Zhang Jingren Gou +4 位作者 Kaixuan Cui Xin Zhang Yujian Yao Suqing Wang Haihui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期397-409,共13页
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ... Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs. 展开更多
关键词 Solid-state lithium metal batteries composite solid-state electrolyte Ultrathin asymmetric structure Pouch cells
下载PDF
Strength and elastic modulus enhancement in Mg-Li-Al matrix composites reinforced by ex situ TiB2 particles via stir casting 被引量:1
20
作者 Jiawei Sun Dehua Ding +4 位作者 Wencai Liu Guohua Wu Hongjie Liu Guangling Wei Hezhou Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3574-3588,共15页
A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasib... A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value. 展开更多
关键词 Mg-Li composite Stir casting Elastic modulus Microstructure Mechanical properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部