期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Investigation on step overcharge to self-heating behavior and mechanism analysis of lithium ion batteries 被引量:2
1
作者 Fengling Yun Shiyang Liu +14 位作者 Min Gao Xuanxuan Bi Weijia Zhao Zenghua Chang Minjuan Yuan Jingjing Li Xueling Shen Xiaopeng Qi Ling Tang Yi Cui Yanyan Fang Lihao Guo Shangqian Zhao Xiangjun Zhang Shigang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期301-311,共11页
To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavio... To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavior,including 5%state of charge(SOC)with small current overcharge and resting until the temperature equilibrium under adiabatic conditions.The intrinsic thermal response and the self-excitation behaviour are analysed through temperature and voltage changes during the step overcharge period.Experimental results show that the deintercalated state of the cathode is highly correlated to self-heating parasitic reactions.Before reaching the upper limit of Negative/Positive(N/P)ratio,the temperature changes little,the heat generation is significantly induced by the reversible heat(endothermic)and ohmic heat,which could balance each other.Following that the lithium metal is gradually deposited on the surface of the anode and reacts with electrolyte upon overcharge,inducing selfheating side reaction.However,this spontaneous thermal reaction could be“self-extinguished”.When the lithium in cathode is completely deintercalated,the boundary point of overcharge is about 4.7 V(~148%SOC,>40℃),and from this point,the self-heating behaviour could be continuously triggered until thermal runaway(TR)without additional overcharge.The whole static and spontaneous process lasts for 115 h and the side reaction heat is beyond 320,000 J.The continuous self-excitation behavior inside the battery is attributed to the interaction between the highly oxidized cathode and the solvent,which leads to the dissolution of metal ions.The dissolved metal ions destroy the SEI(solid electrolyte interphase)film on the surface of the deposited Li of anode,which induces the thermal reaction between lithium metal and the solvent.The interaction between cathode,the deposited Li of anode,and solvent promotes the temperature of the battery to rise slowly.When the temperature of the battery reaches more than 60℃,the reaction between lithium metal and solvent is accelerated.After the temperature rises rapidly to the melting point of the separator,it triggers the thermal runaway of the battery due to the short circuit of the battery. 展开更多
关键词 Lithium ion battery Step overcharge self-heating Boundary Heat generation Amount of lithium
下载PDF
A large-area multi-fingerβ-Ga_(2)O_(3) MOSFET and its self-heating effect 被引量:1
2
作者 Xuanze Zhou Guangwei Xu Shibing Long 《Journal of Semiconductors》 EI CAS CSCD 2023年第7期37-40,共4页
The self-heating effect severely limits device performance and reliability.Although some studies have revealed the heat distribution ofβ-Ga_(2)O_(3) MOSFETs under biases,those devices all have small areas and have di... The self-heating effect severely limits device performance and reliability.Although some studies have revealed the heat distribution ofβ-Ga_(2)O_(3) MOSFETs under biases,those devices all have small areas and have difficulty reflecting practical con-ditions.This work demonstrated a multi-fingerβ-Ga_(2)O_(3) MOSFET with a maximum drain current of 0.5 A.Electrical characteris-tics were measured,and the heat dissipation of the device was investigated through infrared images.The relationship between device temperature and time/bias is analyzed. 展开更多
关键词 β-Ga_(2)O_(3) MOSFET multi-finger self-heating effect
下载PDF
Analytical workload dependence of self-heating effect for SOI MOSFETs considering two-stage heating process
3
作者 李逸帆 倪涛 +13 位作者 李晓静 王娟娟 高林春 卜建辉 李多力 蔡小五 许立达 李雪勤 王润坚 曾传滨 李博 赵发展 罗家俊 韩郑生 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期522-529,共8页
Dynamic self-heating effect(SHE)of silicon-on-insulator(SOI)MOSFET is comprehensively evaluated by ultrafast pulsed I-V measurement in this work.It is found for the first time that the SHE complete heating response an... Dynamic self-heating effect(SHE)of silicon-on-insulator(SOI)MOSFET is comprehensively evaluated by ultrafast pulsed I-V measurement in this work.It is found for the first time that the SHE complete heating response and cooling response of SOI MOSFETs are conjugated,with two-stage curves shown.We establish the effective thermal transient response model with stage superposition corresponding to the heating process.The systematic study of SHE dependence on workload shows that frequency and duty cycle have more significant effect on SHE in first-stage heating process than in the second stage.In the first-stage heating process,the peak lattice temperature and current oscillation amplitude decrease by more than 25 K and 4%with frequency increasing to 10 MHz,and when duty cycle is reduced to 25%,the peak lattice temperature drops to 306 K and current oscillation amplitude decreases to 0.77%.Finally,the investigation of two-stage(heating and cooling)process provides a guideline for the unified optimization of dynamic SHE in terms of workload.As the operating frequency is raised to GHz,the peak temperature depends on duty cycle,and self-heating oscillation is completely suppressed. 展开更多
关键词 self-heating effect(SHE) silicon-on-insulator(SOI)MOSFETs thermal transient response WORKLOAD
下载PDF
Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere 被引量:2
4
作者 邓永锋 谭畅 +1 位作者 韩先伟 谭永华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第2期89-93,共5页
For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasm... For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere. 展开更多
关键词 electron bean: plasma simulation self-heating GEANT4
下载PDF
A study of self-heating characteristics of a pyrrhotite-rich sulphide ore stockpile 被引量:6
5
作者 A.Hadizdeniz S.Kelebek 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期381-386,共6页
Original surface chemistry of sulphidesis altered upon contact with air, leading to ''oxidation'', which is accompanied by evolution of heat. The current study reports results of an investigation on ex... Original surface chemistry of sulphidesis altered upon contact with air, leading to ''oxidation'', which is accompanied by evolution of heat. The current study reports results of an investigation on extent of exothermicity of an experimental nickel-copper sulphide stockpile that was formed at a mining site in Sudbury, Canada. The ore contained pentlandite and chalcopyrite that are accompanied by a large quantity of pyrrhotite. The self-heating characteristics were recorded by temperature sensors placed inside the stockpile. Ambient conditions such as temperature, humidity, and wind velocity were simultaneously recorded. The inner temperature of the stockpile indicated significant fluctuations due to rapid changes, particularly in the outside temperature. The minimum and maximum temperatures recorded in the outside and inside were 5 and 10.5, 44.3 and 32 ℃, respectively. The self-heating capacity of the sulphide ore stockpile observed represents a mild case compared to that experienced by coals. Possible reasons are discussed. 展开更多
关键词 Sulphide ore stockpile self-heating Pyrrhotite Pentlandite Chalcopyrite
下载PDF
Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors
6
作者 张东 武辰飞 +6 位作者 徐尉宗 任芳芳 周东 于芃 张荣 郑有炓 陆海 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期575-579,共5页
Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysi... Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysis has been applied to explore the physics origin of self-heating induced degradation, where Joule heat is shortly accumulated by drain current and dissipated in repeated time cycles as a function of gate bias. Enhanced positive threshold voltage shift is observed at reduced heat dissipation time, higher drain current, and increased gate width. A physical picture of Joule heating assisted charge trapping process has been proposed and then verified with pulsed negative gate bias stressing scheme, which could evidently counteract the self-heating effect through the electric-field assisted detrapping process. As a result, this pulsed gate bias scheme with negative quiescent voltage could be used as a possible way to actively suppress self-heating related device degradation. 展开更多
关键词 AMORPHOUS INGAZNO thin-film TRANSISTOR self-heating effect threshold voltage SHIFT pulsed negative gate BIAS
下载PDF
Electrothermal simulation of the self-heating effects in 4H-SiC MESFETs
7
作者 吕红亮 张义门 +1 位作者 张玉明 车勇 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第4期1410-1414,共5页
A thermal model of 4H-SiC MESFET is developed based on the temperature dependences of material parameters and three-region I - V model. The static current characteristics of 4H-SiC MESFET have been obtained with the c... A thermal model of 4H-SiC MESFET is developed based on the temperature dependences of material parameters and three-region I - V model. The static current characteristics of 4H-SiC MESFET have been obtained with the consideration of the self-heating effect on related parameters including electron mobility, saturation velocity and thermal conductivity. High voltage performances are analysed using equivalent thermal conductivity model. Using the physicalbased simulations, we studied the dependence of self-heating temperature on the thickness and doping of substrate. The obtained results can be used for optimization of the thermal design of the SiC-based high-power field effect transistors. 展开更多
关键词 4H-SIC MESFET self-heating analytic model
下载PDF
Influence of self-heating on the millimeter-wave and terahertz performance of MBE grown silicon IMPATT diodes
8
作者 S.J.Mukhopadhyay Prajukta Mukherjee +1 位作者 Aritra Acharyya Monojit Mitra 《Journal of Semiconductors》 EI CAS CSCD 2020年第3期13-22,共10页
The influence of self-heating on the millimeter-wave(mm-wave)and terahertz(THz)performance of double-drift region(DDR)impact avalanche transit time(IMPATT)sources based on silicon(Si)has been investigated in this pape... The influence of self-heating on the millimeter-wave(mm-wave)and terahertz(THz)performance of double-drift region(DDR)impact avalanche transit time(IMPATT)sources based on silicon(Si)has been investigated in this paper.The dependences of static and large-signal parameters on junction temperature are estimated using a non-sinusoidal voltage excited(NSVE)large-signal simulation technique developed by the authors,which is based on the quantum-corrected drift-diffusion(QCDD)model.Linear variations of static parameters and non-linear variations of large-signal parameters with temperature have been observed.Analytical expressions representing the temperature dependences of static and large-signal parameters of the diodes are developed using linear and 2nd degree polynomial curve fitting techniques,which will be highly useful for optimizing the thermal design of the oscillators.Finally,the simulated results are found to be in close agreement with the experimentally measured data. 展开更多
关键词 IMPATT oscillators linear temperature coefficient self-heating thermal runway quadratic temperature coefficient
下载PDF
A new physics-based self-heating effect model for 4H-SiC MESFETs
9
作者 曹全君 张义门 张玉明 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第12期4622-4626,共5页
A new self-heating effect model for 4H-SiC MESFETs is proposed based on a combination of an analytical and a computer aided design (CAD) oriented drain current model. The circuit oriented expressions of 4H-SiC low-f... A new self-heating effect model for 4H-SiC MESFETs is proposed based on a combination of an analytical and a computer aided design (CAD) oriented drain current model. The circuit oriented expressions of 4H-SiC low-field electron mobility and incomplete ionization rate, which are related to temperature, are presented in this model, which are used to estimate the self-heating effect of 4H-SiC MESFETs. The verification of the present model is made, and the good agreement between simulated results and measured data of DC I - V curves with the self-heating effect is obtained. 展开更多
关键词 4H silicon carbide metal semiconductor field effect transistor self-heating effect com puter aided design
下载PDF
Machine Learning-Based Predictions on the Self-Heating Characteristics of Nanocomposites with Hybrid Fillers
10
作者 Taegeon Kil D.I.Jang +1 位作者 H.N.Yoon Beomjoo Yang 《Computers, Materials & Continua》 SCIE EI 2022年第6期4487-4502,共16页
A machine learning-based prediction of the self-heating characteristics and the negative temperature coefficient(NTC)effect detection of nanocomposites incorporating carbon nanotube(CNT)and carbon fiber(CF)is proposed... A machine learning-based prediction of the self-heating characteristics and the negative temperature coefficient(NTC)effect detection of nanocomposites incorporating carbon nanotube(CNT)and carbon fiber(CF)is proposed.The CNT content was fixed at 4.0 wt.%,and CFs having three different lengths(0.1,3 and 6 mm)at dosage of 1.0 wt.%were added to fabricate the specimens.The self-heating properties of the specimens were evaluated via self-heating tests.Based on the experiment results,two types of artificial neural network(ANN)models were constructed to predict the surface temperature and electrical resistance,and to detect a severe NTC effect.The present predictions were compared with experimental values to verify the applicability of the proposed ANN models.The ANN model for data prediction was able to predict the surface temperature and electrical resistance closely,with corresponding R-squared value of 0.91 and 0.97,respectively.The ANN model for data detection could detect the severe NTC effect occurred in the nanocomposites under the self-heating condition,as evidenced by the accuracy and sensitivity values exceeding 0.7 in all criteria. 展开更多
关键词 Machine learning NANOCOMPOSITES carbon fillers self-heating negative temperature coefficient
下载PDF
Impact of ambient temperature on the self-heating effects in FinFETs 被引量:3
11
作者 Longxiang Yin Gang Du Xiaoyan Liu 《Journal of Semiconductors》 EI CAS CSCD 2018年第9期74-81,共8页
We use an electro-thermal coupled Monte Carlo simulation framework to investigate the self-heating effect(SHE) in 14 nm bulk n Fin FETs with ambient temperature(TA) from 220 to 400 K. Based on this method, nonloca... We use an electro-thermal coupled Monte Carlo simulation framework to investigate the self-heating effect(SHE) in 14 nm bulk n Fin FETs with ambient temperature(TA) from 220 to 400 K. Based on this method, nonlocal heat generation can be achieved. Contact thermal resistances of Si/Metal and Si/Si O_2 are selected to ensure that the source and drain heat dissipation paths are the first two heat dissipation paths. The results are listed below:(i) not all input power(Q_(input) turns into heat generation in the device region and some is taken out by the thermal non-equilibrium carriers, owing to the serious non-equilibrium transport;(ii) a higher TA leads to a larger ratio of input power turning into heat generation in the device region at the same operating voltages;(iii) SHE can lead to serious degradation in the carrier transport, which will increase when TA increases;(iv) the current degradation can be 8.9% when Vds = 0.7 V, Vgs = 1 V and TA = 400 K;(v) device thermal resistance(Rth) increases with increasing of TA, which is seriously impacted by the non-equilibrium transport. Hence, the impact of TA should be carefully considered when investigating SHE in nanoscale devices. 展开更多
关键词 self-heating effects ambient temperature FINFET Monte Carlo method
原文传递
Self-heating and traps effects on the drain transient response of AlGaN/GaN HEMTs 被引量:1
12
作者 张亚民 冯士维 +3 位作者 朱慧 龚雪芹 邓兵 马琳 《Journal of Semiconductors》 EI CAS CSCD 2014年第10期37-40,共4页
The effects of self-heating and traps on the drain current transient responses of AlGaN/GaN HEMTs are studied by 2D numerical simulation. The variation of the drain current simulated by the drain turn-on pulses has be... The effects of self-heating and traps on the drain current transient responses of AlGaN/GaN HEMTs are studied by 2D numerical simulation. The variation of the drain current simulated by the drain turn-on pulses has been analyzed. Our results show that temperature is the main factor for the drain current lag. The time that the drain current takes to reach a steady state depends on the thermal time constant, which is 8μs in this case. The dynamics of the trapping of electron and channel electron density under drain turn-on pulse voltage are discussed in detail, which indicates that the accepter traps in the buffer are the major reason for the current collapse when the electric field significantly changes. The channel electron density has been shown to increase as the channel temperature rises. 展开更多
关键词 AlGaN/GaN HEMTs drain transient response channel temperature rise self-heating TRAPS
原文传递
Thermo-Mechanical Simulation of Self-Heating of a High-Power Diode Made of Ti_(3)SiC_(2)(MAX) Phase-on-4H-SiC Substrate 被引量:1
13
作者 ABOU HAMAD Valdemar SOUEIDAN Maher +4 位作者 HAMAD Hassan GREMILLARD Laurent FABREGUE Damien ZGHEIB Charbel ZAATAR Youssef 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第3期939-949,共11页
The fact that traditional semiconductors have almost reached their performance limits in high power applications,is leading to failure in high power devices.This failure results from self-heating effects,leading to hi... The fact that traditional semiconductors have almost reached their performance limits in high power applications,is leading to failure in high power devices.This failure results from self-heating effects,leading to higher temperature and a breakdown of the electrical contact.The good thermal and mechanical properties of 4 H-SiC and Ti_(3)SiC_(2) and their good performance at high temperatures make them good candidates for high power applications.In order to improve the performance of electrical contacts,a thermo-mechanical simulation was carried out using the finite element method to study the self-heating effects in a high power PN diode made of a 4 H-SiC substrate with a Ti_(3)SiC_(2) electrical contact and Al_(3)Ti metallization.The three-dimensional model took into account the temperature dependency of several thermal and mechanical properties of the different materials to improve calculation accuracy.To simulate the self-heating,the power loss in the diode was calculated from the corresponding direct I-V characteristic.In addition,the interfacial thermal resistances(ITR)between the different layers were varied and studied in the thermo-mechanical investigation,in sequence to determine their effects on the heat dissipation and the resulting stresses in the model.The results show that for realistic ITR values,the ITR barely affects heat diffusion mechanical stresses of the model.Whereas,ITR may cause serious problem to the functionality and the efficiency of some electronic components.On the other hand,extremely large ITR leads to a decrease in the thermal stress in the diode.Good control on the ITR may help to improve the performance of high-power devices in the future,in addition to providing more efficient electrical contacts. 展开更多
关键词 thermo-mechanical simulation self-heating 4H-SIC MAX Phase electrical contact
原文传递
Numerical analysis of the self-heating effect in SGOI with a double step buried oxide
14
作者 李斌 刘红侠 +2 位作者 李劲 袁博 曹磊 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第3期42-48,共7页
To reduce the self-heating effect of strained Si grown on relaxed SiGe-on-insulator(SGOI) n-type metal-oxide-semiconductor field-effect transistors(nMOSFETs),this paper proposes a novel device called double step b... To reduce the self-heating effect of strained Si grown on relaxed SiGe-on-insulator(SGOI) n-type metal-oxide-semiconductor field-effect transistors(nMOSFETs),this paper proposes a novel device called double step buried oxide(BOX) SGOI,investigates its electrical and thermal characteristics,and analyzes the effect of self-heating on its electrical parameters.During the simulation of the device,a low field mobility model for strained Si MOSFETs is established and reduced thermal conductivity resulting from phonon boundary scattering is considered.A comparative study of SGOI nMOSFETs with different BOX thicknesses under channel and different channel strains has been performed.By reducing moderately the BOX thickness under the channel,the channel temperature caused by the self-heating effect can be effectively reduced.Moreover,mobility degradation,off state current and a short-channel effect such as drain induced barrier lowering can be well suppressed.Therefore,SGOI MOSFETs with a thinner BOX under the channel can improve the overall performance and long-term reliability efficiently. 展开更多
关键词 self-heating effect step BOX SGOI mobility model numerical analysis
原文传递
A novel interconnect optimal buffer insertion model considering the self-heating effect
15
作者 张岩 董刚 +4 位作者 杨银堂 王宁 丁尧舜 刘晓贤 王凤娟 《Journal of Semiconductors》 EI CAS CSCD 2013年第11期118-123,共6页
Considering the self-heating effect, an accurate expression for the global interconnection resistance per unit length in terms of interconnection wire width and spacing is presented. Based on the proposed resistance m... Considering the self-heating effect, an accurate expression for the global interconnection resistance per unit length in terms of interconnection wire width and spacing is presented. Based on the proposed resistance model and according to the trade-off theory, a novel optimization analytical model of delay, power dissipation and bandwidth is derived. The proposed optimal model is verified and compared based on 90 nm, 65 nm and 40 nm CMOS technologies. It can be found that more optimum results can be easily obtained by the proposed model. This optimization model is more accurate and realistic than the conventional optimization models, and can be integrated into the global interconnection design ofnano-scale integrated circuits. 展开更多
关键词 self-heating effect interconnection wire resistance per unit length optimal model very large scale integration
原文传递
Modeling of self-heating effects in polycrystalline silicon thin film transistors
16
作者 邓婉玲 郑学仁 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2009年第7期44-47,共4页
An analytical DC model accounting for the self-heating effect of polycrystalline silicon thin-film transistors(poly-Si TFTs) is presented.In deriving the model for the self-heating effect, the temperature dependence... An analytical DC model accounting for the self-heating effect of polycrystalline silicon thin-film transistors(poly-Si TFTs) is presented.In deriving the model for the self-heating effect, the temperature dependence of the effective mobility is studied in detail.Based on the mobility model and a first order approximation, a closed-form analytical drain current model considering the self-heating effect is derived.Compared with the available experimental data, the proposed model, which includes the self-heating and kink effects, provides an accurate description of the output characteristics over the linear, the saturation, and the kink regimes. 展开更多
关键词 polycrystalline silicon thin film transistors self-heating surface potential
原文传递
Finite element analysis of temperature distribution of polycrystalline silicon thin film transistors under self-heating stress
17
作者 Huaisheng WANG Mingxiang WANG Zhenyu YANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2009年第2期227-233,共7页
The temperature distribution of typical n-type polycrystalline silicon thin film transistors under selfheating(SH)stress is studied by finite element analysis.From both steady-state and transient thermal simulation,th... The temperature distribution of typical n-type polycrystalline silicon thin film transistors under selfheating(SH)stress is studied by finite element analysis.From both steady-state and transient thermal simulation,the influence of device power density,substrate material,and channel width on device temperature distribution is analyzed.This study is helpful to understand the mechanism of SH degradation,and to effectively alleviate the SH effect in device operation. 展开更多
关键词 finite element analysis(FEA) temperature distribution thin film transistors self-heating STEADY-STATE transient state
原文传递
Fluorination-mitigated high-current degradation of amorphous InGaZnO thin-film transistors
18
作者 Yanxin Wang Jiye Li +4 位作者 Fayang Liu Dongxiang Luo Yunping Wang Shengdong Zhang Lei Lu 《Journal of Semiconductors》 EI CAS CSCD 2023年第9期57-61,共5页
As growing applications demand higher driving currents of oxide semiconductor thin-film transistors(TFTs),severe instabilities and even hard breakdown under high-current stress(HCS)become critical challenges.In this w... As growing applications demand higher driving currents of oxide semiconductor thin-film transistors(TFTs),severe instabilities and even hard breakdown under high-current stress(HCS)become critical challenges.In this work,the triggering voltage of HCS-induced self-heating(SH)degradation is defined in the output characteristics of amorphous indium-galliumzinc oxide(a-IGZO)TFTs,and used to quantitatively evaluate the thermal generation process of channel donor defects.The fluorinated a-IGZO(a-IGZO:F)was adopted to effectively retard the triggering of the self-heating(SH)effect,and was supposed to originate from the less population of initial deep-state defects and a slower rate of thermal defect transition in a-IGZO:F.The proposed scheme noticeably enhances the high-current applications of oxide TFTs. 展开更多
关键词 amorphous indium-gallium-zinc oxide(a-IGZO) thin-film transistors(TFTs) current stress self-heating(SH) FLUORINATION
下载PDF
Classification of fires in coal waste dumps based on Landsat,Aster thermal bands and thermal camera in Polish and Ukrainian mining regions 被引量:1
19
作者 Adam Nadudvari Anna Abramowicz +2 位作者 Monika Fabianska Magdalena Misz-Kennan Justyna Ciesielczuk 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第3期441-456,共16页
A self-heating intensity index(SHII)based on the highest(pixel max.)and lowest(pixel min.)values taken from satellite thermal maps of burning coal waste dumps are proposed.The index enables the classification of such ... A self-heating intensity index(SHII)based on the highest(pixel max.)and lowest(pixel min.)values taken from satellite thermal maps of burning coal waste dumps are proposed.The index enables the classification of such fires in Ukrainian-and Polish coal waste dumps.Both in Ukraine and in Poland,varying thermal intensities during 1985–2019 are revealed,using the SHII and following thermal intensity threshold values,namely,extreme thermal activity([7),advanced(3–7),moderate(3–1.5),initial(1.5–1),no activity(<1).The SHII shows decreasing thermal activity in the selected Ukrainian coal waste dumps during 2017–2019.It aids in reconstructing the thermal history of the dumps.Analysis of satellite images revealed a large number of burning coal waste dumps in the Donetsk Coal Basin(Ukraine)with high thermal activity.Such burning likely reflects large amounts of organic matter and sulphides in the dumped material subjected to self-heating and self-burning processes,lack of compaction of the coal waste and/or high methane contents.Comparison of SHII values calculated from satellite-and drone thermal-camera images were compared to show that SHII from drone thermal images have much higher values than those from satellite images;the former have better resolution.Thus,SHII from Landsat-and drone images should be used separately in dump heating studies. 展开更多
关键词 self-heating Coal waste dump LANDSAT self-heating intensity index(SHII) DRONE
下载PDF
Influence of organic and inorganic properties of coal-shale on spontaneous combustion liability 被引量:6
20
作者 M.Onifade B.Genc N.Wagner 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第6期851-857,共7页
Coal and coal-shale undergo low-temperature oxidation when exposed to air,potentially leading to spontaneous combustion.Coal-shale found in association with coal seams vary considerably in their intrinsic properties a... Coal and coal-shale undergo low-temperature oxidation when exposed to air,potentially leading to spontaneous combustion.Coal-shale found in association with coal seams vary considerably in their intrinsic properties and spontaneous combustion liability index.Fourteen coal-shale samples collected from four different coal mines in Witbank Coalfield,South Africa,were experimentally investigated.The influence of coal-shale intrinsic properties and spontaneous combustion liability indices(determined by the WitsEhac Index and the Wits-CT Index)were established.The liability indices indicate relationships with the intrinsic factors and thus,identifying the major intrinsic factors affecting liability toward spontaneous combustion in these coal-shale samples.The XRF analysis indicated that the coal-shale samples are rich in Si O2,Al2O3 and Fe2O3,while the XRD showed that same coal-shale samples are generally dominated with kaolinite and quartz.The coal-shale occurred in association with medium Rank C bituminous coal and contained varying proportion of macerals.The Wits-Ehac Index was unable to reliably determine liability indices of some coal-shale samples,and hence the Wits-CT Index was developed.The results obtained from the characterisation tests may be used as a tool to predict the spontaneous combustion liability in carbonaceous material and may serve as a reference when comparing coal-shale from different coal mines. 展开更多
关键词 Wits-Ehac Index Wits-CT INDE Witbank Coalfield and self-heating
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部