A new SOI LDMOS structure with buried n-islands(BNIs) on the top interface of the buried oxide(BOX) is presented in a p-SOI high voltage integrated circuits(p-SOI HVICs),which exhibits good self-isolation perfor...A new SOI LDMOS structure with buried n-islands(BNIs) on the top interface of the buried oxide(BOX) is presented in a p-SOI high voltage integrated circuits(p-SOI HVICs),which exhibits good self-isolation performance between the power device and low-voltage control circuits.Furthermore,both the donor ions of BNIs and holes collected between depleted n-islands not only enhance the electric field in BOX from 32 to 113 V/μm,but also modulate the lateral electric field distribution,resulting in an improvement of the breakdown voltage of the BNI SOI LDMOS.A 673 V BNI SOI LDMOS is experimentally obtained and presents an excellent self-isolation performance in a p-SOI HVIC.展开更多
A compact self-isolated Multi Input Multi Output (MIMO) antennaarray is presented for 5G mobile phone devices. The proposed antenna systemis operating at the 3.5 GHz band (3400–3600 MHz) and consists of eight antenna...A compact self-isolated Multi Input Multi Output (MIMO) antennaarray is presented for 5G mobile phone devices. The proposed antenna systemis operating at the 3.5 GHz band (3400–3600 MHz) and consists of eight antennaelements placed along two side edges of a mobile device, which meets the currenttrend requirements of full-screen smartphone devices. Each antenna element isdivided into two parts, a front part and back part. The front part consists of anI-shaped feeding line and a modified Hilbert fractal monopole antenna, whereasthe back part is an L-shaped element shorted to the system ground by a0.5 mm short stub. A desirable compactness can be obtained by utilizing the Hilbert space-filling property where the antenna element’s overall planar size printedon the side-edge frame is just (9.57 mm × 5.99 mm). The proposed MIMO antenna system has been simulated, analyzed, fabricated and tested. Based on the selfisolated property, good isolation (better than 15 dB) is attained without employingadditional decoupling elements and/or isolation techniques, which increases system complexity and reduces the antenna efficiency. The scattering parameters,antenna efficiencies, antenna gains, and antenna radiation characteristics areinvestigated to assess the proposed antenna performance. For evaluating the proposed antenna array system performance, the Envelope Correlation Coefficients(ECCs), Mean Effective Gains (MEGs) and channel capacity are calculated.Desirable antenna and MIMO performances are evaluated to confirm the suitability of the proposed MIMO antenna system for 5G mobile terminals.展开更多
文摘A new SOI LDMOS structure with buried n-islands(BNIs) on the top interface of the buried oxide(BOX) is presented in a p-SOI high voltage integrated circuits(p-SOI HVICs),which exhibits good self-isolation performance between the power device and low-voltage control circuits.Furthermore,both the donor ions of BNIs and holes collected between depleted n-islands not only enhance the electric field in BOX from 32 to 113 V/μm,but also modulate the lateral electric field distribution,resulting in an improvement of the breakdown voltage of the BNI SOI LDMOS.A 673 V BNI SOI LDMOS is experimentally obtained and presents an excellent self-isolation performance in a p-SOI HVIC.
文摘A compact self-isolated Multi Input Multi Output (MIMO) antennaarray is presented for 5G mobile phone devices. The proposed antenna systemis operating at the 3.5 GHz band (3400–3600 MHz) and consists of eight antennaelements placed along two side edges of a mobile device, which meets the currenttrend requirements of full-screen smartphone devices. Each antenna element isdivided into two parts, a front part and back part. The front part consists of anI-shaped feeding line and a modified Hilbert fractal monopole antenna, whereasthe back part is an L-shaped element shorted to the system ground by a0.5 mm short stub. A desirable compactness can be obtained by utilizing the Hilbert space-filling property where the antenna element’s overall planar size printedon the side-edge frame is just (9.57 mm × 5.99 mm). The proposed MIMO antenna system has been simulated, analyzed, fabricated and tested. Based on the selfisolated property, good isolation (better than 15 dB) is attained without employingadditional decoupling elements and/or isolation techniques, which increases system complexity and reduces the antenna efficiency. The scattering parameters,antenna efficiencies, antenna gains, and antenna radiation characteristics areinvestigated to assess the proposed antenna performance. For evaluating the proposed antenna array system performance, the Envelope Correlation Coefficients(ECCs), Mean Effective Gains (MEGs) and channel capacity are calculated.Desirable antenna and MIMO performances are evaluated to confirm the suitability of the proposed MIMO antenna system for 5G mobile terminals.