期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Self-Learning and Its Application to Laminar Cooling Model of Hot Rolled Strip 被引量:16
1
作者 GONG Dian-yao XU Jian-zhong PENG Liang-gui WANG Guo-dong LIU Xiang-hua 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第4期11-14,共4页
The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculati... The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective. 展开更多
关键词 laminar cooling hot rolled strip self-learning process control model
下载PDF
Self-Learning of Multivariate Time Series Using Perceptually Important Points 被引量:2
2
作者 Timo Lintonen Tomi Raty 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1318-1331,共14页
In machine learning,positive-unlabelled(PU)learning is a special case within semi-supervised learning.In positiveunlabelled learning,the training set contains some positive examples and a set of unlabelled examples fr... In machine learning,positive-unlabelled(PU)learning is a special case within semi-supervised learning.In positiveunlabelled learning,the training set contains some positive examples and a set of unlabelled examples from both the positive and negative classes.Positive-unlabelled learning has gained attention in many domains,especially in time-series data,in which the obtainment of labelled data is challenging.Examples which originate from the negative class are especially difficult to acquire.Self-learning is a semi-supervised method capable of PU learning in time-series data.In the self-learning approach,observations are individually added from the unlabelled data into the positive class until a stopping criterion is reached.The model is retrained after each addition with the existent labels.The main problem in self-learning is to know when to stop the learning.There are multiple,different stopping criteria in the literature,but they tend to be inaccurate or challenging to apply.This publication proposes a novel stopping criterion,which is called Peak evaluation using perceptually important points,to address this problem for time-series data.Peak evaluation using perceptually important points is exceptional,as it does not have tunable hyperparameters,which makes it easily applicable to an unsupervised setting.Simultaneously,it is flexible as it does not make any assumptions on the balance of the dataset between the positive and the negative class. 展开更多
关键词 Positive-unlabelled(PU) learning self-learning stopping criterion time series
下载PDF
Where Have Network-based Self-learning Classes Gone?——Reflections & Expectations on the Employment of Network-based Self-learning Classes
3
作者 吴雪茵 《海外英语》 2012年第18期279-280,共2页
To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time wen... To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time went by,some universities gradually gave them up.The paper intends to reflect on the employment of network-based self-learning listening classes,analyz ing the learning with and without its aid,and meanwhile introduce the need to re-employ it,and discuss how we can improve the network-based self-learning classes to help with students' listening. 展开更多
关键词 NETWORK-BASED self-learning listening improvement
下载PDF
SELF-LEARNING FUZZY CONTROL RULES USING GENETIC ALGORITHMS
4
作者 方建安 邵世煌 《Journal of China Textile University(English Edition)》 EI CAS 1995年第1期7-13,共7页
This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the ... This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust. 展开更多
关键词 GENETIC ALGORITHM self-learning FUZZY control.
下载PDF
Mathematical model for cooling process and its self-learning applied in hot rolling mill
5
作者 刘伟嵬 李海军 +1 位作者 王昭东 王国栋 《Journal of Shanghai University(English Edition)》 CAS 2011年第6期548-552,共5页
Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control p... Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities. 展开更多
关键词 cooling process MODEL coiling temperature self-learning hot rolled steel strip
下载PDF
Study on intelligent digital welding machine with a self-learning function
6
作者 张晓莉 朱强 +2 位作者 李钰桢 龙鹏 薛家祥 《China Welding》 EI CAS 2013年第4期74-80,共7页
A design idea was proposed that it was about intelligent digital welding machine with self-learning and self- regulation functions. The overall design scheme of software and hardware was provided. It was introduced th... A design idea was proposed that it was about intelligent digital welding machine with self-learning and self- regulation functions. The overall design scheme of software and hardware was provided. It was introduced that a parameter self-learning algorithm was based on large-step calibration and partial Newton interpolation. Furthermore, experimental verification was carried out with different welding technologies. The results show that weld bead is pegrect. Therefore, good welding quality and stability are obtained, and intelligent regulation is realized by parameters self-learning. 展开更多
关键词 intelligent digital welding machine self-learning large-step calibration
下载PDF
Self-learning Fuzzy Controllers Based On a Real-time Reinforcement Genetic Algorithm
7
作者 方建安 苗清影 +1 位作者 郭钊侠 邵世煌 《Journal of Donghua University(English Edition)》 EI CAS 2002年第2期19-22,共4页
This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globall... This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result. 展开更多
关键词 fuzzy controller self-learning REAL time reinforcement GENETIC algorithm
下载PDF
Neuron self-learning PSD control for backside width of weld pool in pulsed GTAW with wire filler
8
作者 张广军 陈善本 吴林 《China Welding》 EI CAS 2003年第2期87-91,共5页
In this paper, the weld pool shape control by intelligent strategy was studied. A neuron self-learning PSD controller for backside width of weld pool in pulsed GTAW with wire filler was designed. The PSD control arith... In this paper, the weld pool shape control by intelligent strategy was studied. A neuron self-learning PSD controller for backside width of weld pool in pulsed GTAW with wire filler was designed. The PSD control arithmetic was analyzed, simulating experiment by MATLAB software was done, and the validating experiments on varied heat sink workpiece and varied gap workpiece were successfully implemented. The study results show that the neuron self-learning PSD control method can attain a perfect control effect under different set values and conditions, and is suitable for the welding process with the varied structure and coefficients of control model. 展开更多
关键词 pulsed GTAW with wire filler backside width control intelligent control neuron self-learning PSD
下载PDF
The Self-Learning Gate for Quantum Computing
9
作者 Abdullah Ibrahim S. Alsalman 《Journal of Quantum Information Science》 2022年第1期21-28,共8页
Self-learning is one of the most important scientific methods that helps develop sciences, as it derives from the desire and interests of the individual. However, self-learning loses importance if it does not follow t... Self-learning is one of the most important scientific methods that helps develop sciences, as it derives from the desire and interests of the individual. However, self-learning loses importance if it does not follow the scientific methodology for building and organizing information. The case becomes harder if the science is new and few scientific sources are available. Quantum computing is one of the new sciences in computer science and needs the support of specialists to develop it. Quantum computing overlaps with many sciences such as physics, chemistry, and mathematics, so any student in one of the previous disciplines may lose the correct self-learning path to find themselves learning the details of another discipline that does not achieve their goals. This article motivates students and those interested in computer science to begin studying the science of quantum computing and choose the same specialization that suits their interests. The article also provides a roadmap for self-learning steps to protect the learner from losing the correct learning path. I have categorized the stages of learning quantum computing into four steps through which all the essential basics can be learned, provided the goals mentioned in each stage which should be achieved. The learning strategy proposed in this article corresponds with individuals’ self-learning rules. Through my personal experience, the proposed learning strategy has proven its effectiveness in building information in an enjoyable scientific way. 展开更多
关键词 Quantum Computing Computer Science self-learning Technology Revolution
下载PDF
A Self-Learning Diagnosis Algorithm Based on Data Clustering
10
作者 Dmitry Tretyakov 《Intelligent Control and Automation》 2016年第3期84-92,共9页
The article describes an approach to building a self-learning diagnostic algorithm. The self-learning algorithm creates models of the object under consideration. The models are formed periodically through a certain ti... The article describes an approach to building a self-learning diagnostic algorithm. The self-learning algorithm creates models of the object under consideration. The models are formed periodically through a certain time period. The model includes a set of functions that can describe whole object, or a part of the object, or a specified functionality of the object. Thus, information about fault location can be obtained. During operation of the object the algorithm collects data received from sensors. Then the algorithm creates samples related to steady state operation. Clustering of those samples is used for the functions definition. Values of the functions in the centers of clusters are stored in the computer’s memory. To illustrate the considered approach, its application to the diagnosis of turbomachines is described. 展开更多
关键词 self-learning Diagnostics Fault Detection CLUSTERS K-MEANS Turbomachine Gas Turbine Centrifugal Supercharger Gas Compressor Unit
下载PDF
Physical neural networks with self-learning capabilities
11
作者 Weichao Yu Hangwen Guo +1 位作者 Jiang Xiao Jian Shen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第8期23-42,共20页
Physical neural networks are artificial neural networks that mimic synapses and neurons using physical systems or materials.These networks harness the distinctive characteristics of physical systems to carry out compu... Physical neural networks are artificial neural networks that mimic synapses and neurons using physical systems or materials.These networks harness the distinctive characteristics of physical systems to carry out computations effectively,potentially surpassing the constraints of conventional digital neural networks.A recent advancement known as“physical self-learning”aims to achieve learning through intrinsic physical processes rather than relying on external computations.This article offers a comprehensive review of the progress made in implementing physical self-learning across various physical systems.Prevailing learning strategies that contribute to the realization of physical self-learning are discussed.Despite challenges in understanding the fundamental mechanism of learning,this work highlights the progress towards constructing intelligent hardware from the ground up,incorporating embedded self-organizing and self-adaptive dynamics in physical systems. 展开更多
关键词 self-learning physical neural networks neuromorphic computing physical learning
原文传递
Traffic-Aware Fuzzy Classification Model to Perform IoT Data Traffic Sourcing with the Edge Computing
12
作者 Huixiang Xu 《Computers, Materials & Continua》 SCIE EI 2024年第2期2309-2335,共27页
The Internet of Things(IoT)has revolutionized how we interact with and gather data from our surrounding environment.IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to... The Internet of Things(IoT)has revolutionized how we interact with and gather data from our surrounding environment.IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to derive valuable insights.The rapid proliferation of Internet of Things(IoT)devices has ushered in an era of unprecedented data generation and connectivity.These IoT devices,equipped with many sensors and actuators,continuously produce vast volumes of data.However,the conventional approach of transmitting all this data to centralized cloud infrastructures for processing and analysis poses significant challenges.However,transmitting all this data to a centralized cloud infrastructure for processing and analysis can be inefficient and impractical due to bandwidth limitations,network latency,and scalability issues.This paper proposed a Self-Learning Internet Traffic Fuzzy Classifier(SLItFC)for traffic data analysis.The proposed techniques effectively utilize clustering and classification procedures to improve classification accuracy in analyzing network traffic data.SLItFC addresses the intricate task of efficiently managing and analyzing IoT data traffic at the edge.It employs a sophisticated combination of fuzzy clustering and self-learning techniques,allowing it to adapt and improve its classification accuracy over time.This adaptability is a crucial feature,given the dynamic nature of IoT environments where data patterns and traffic characteristics can evolve rapidly.With the implementation of the fuzzy classifier,the accuracy of the clustering process is improvised with the reduction of the computational time.SLItFC can reduce computational time while maintaining high classification accuracy.This efficiency is paramount in edge computing,where resource constraints demand streamlined data processing.Additionally,SLItFC’s performance advantages make it a compelling choice for organizations seeking to harness the potential of IoT data for real-time insights and decision-making.With the Self-Learning process,the SLItFC model monitors the network traffic data acquired from the IoT Devices.The Sugeno fuzzy model is implemented within the edge computing environment for improved classification accuracy.Simulation analysis stated that the proposed SLItFC achieves 94.5%classification accuracy with reduced classification time. 展开更多
关键词 Internet of Things(IoT) edge computing traffic data self-learning fuzzy-learning
下载PDF
The Impact of Personalized Learning Path Design on Online Education Platforms on Students’Self-Learning Abilities
13
作者 Zhang Yinlei 《Education and Teaching Research》 2024年第2期59-65,共7页
The study investigates the impact of personalized learning path design on students’self-learning abilities(SLA)within online education platforms.Employing a mixed-methods approach,the research examines the effectiven... The study investigates the impact of personalized learning path design on students’self-learning abilities(SLA)within online education platforms.Employing a mixed-methods approach,the research examines the effectiveness of personalized learning through quantitative surveys and qualitative interviews with a diverse sample of online learners.The findings indicate that personalized learning path design significantly enhances students’self-efficacy,engagement,and satisfaction,leading to improved SLA.The study’s conceptual model and empirical data support the hypothesis that personalization in learning environments fosters self-directed learning skills.The discussion highlights the implications for educational practice,emphasizing the need for online platforms to prioritize personalization and for educators to adapt their teaching methods to support diverse learner needs.The research also acknowledges limitations and suggests future directions,including longitudinal studies and expanded participant demographics.The study concludes that personalized learning path design is a promising strategy for online education platforms to empower learners and promote lifelong learning skills. 展开更多
关键词 Personalized Learning Online Education Platforms self-learning Abilities Learner Engagement SELF-EFFICACY Learning Path Design Mixed-Methods Research Educational Technology Adaptive Learning Learner-Centered Education
原文传递
A novel self-learning approach to overcome incompatibility on TripAdvisor reviews
14
作者 Prarthana Abeysinghe Thushara Bandara 《Data Science and Management》 2022年第1期1-10,共10页
Among social media networks,TripAdvisor acts as the main role because everyone is eager to share and review their thoughts on their travel experiences in different destinations.Sentiment analysis is amethod that can b... Among social media networks,TripAdvisor acts as the main role because everyone is eager to share and review their thoughts on their travel experiences in different destinations.Sentiment analysis is amethod that can be used to analyze people's behaviors and opinions onpublic and socialmedia platforms.In this study,hotel reviews are extracted fromthe five most attractive Sri Lankan cities,and user-written reviews are compared over user bubble ratings,which define overall travelers'experiences as a numerical scale that ranks from 1 to 5.We find that the compatibility between userwritten reviews and bubble ratings has a low correlation because bubble ratings may not represent the overall idea of users'genuine opinions expressed in their reviews.To address this problem,a two-phase approach is proposed:(1)the ensemblemethod to improve the performance of lexicon-based outputs and identify the correctlymatching user review and bubble rating;(2)the self-learning approach to finding the sentiment of a review that does not properly label by the user.The performance is studied by considering reviews incompatible with the sentiment of user bubble rating and the sentiment generated by the proposedmodel.For example,regardless of bigram“not good”,the average percentages of the word“good”for each negatively identified review from the proposed model and bubble rating are 25.63%and 38.85%,respectively.Thereby,it is apparent that the negative sentiments derived by bubble rating have significantly more positive words compared to the proposed model. 展开更多
关键词 Algorithms Sentiment analysis Social media TripAdvisor self-learning
下载PDF
Nominal friction coefficient in spread formulas based on lead rolling experiments
15
作者 王鸿雨 胡玉昆 +2 位作者 高锋 赵德文 张殿华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2693-2700,共8页
Friction coefficients in spread formulas were studied under low width-to-thickness ratio. The effects of all the factors on friction were considered as different roughness of surfaces. After lead rolling experiments i... Friction coefficients in spread formulas were studied under low width-to-thickness ratio. The effects of all the factors on friction were considered as different roughness of surfaces. After lead rolling experiments in 5 different roughness grades, friction coefficients were obtained. With changing width-to-thickness ratio, reduction rate and ratio of diameter of roller to thickness, all the nominal friction coefficients which can be used in these formulas were calculated. Then, a fitting expression was proposed, comparing with the results measured in 232 times tests, the errors of the nominal friction coefficients calculated by the expression are mostly less than 12%. After a certain times self-learning, the errors are no more than 2%. With the varying nominal friction coefficients, the spread will be predicted more accurately. When the nominal friction coefficient is used to predict the spread under the real working condition, the results calculated are also in agreement with the measured ones, and the errors are less than 2%. This credible reference and solution about how to set the friction coefficient in spread formulas would also be used in practical industrial production. 展开更多
关键词 SPREAD ROLLING friction coefficient FITTING self-learning
下载PDF
HYDRAULIC PRESSURE SIGNAL DENOISING USING THRESHOLD SELF-LEARNING WAVELET ALGORITHM 被引量:8
16
作者 GUO Xin-lei YANG Kai-lin GUO Yong-xin 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第4期433-439,共7页
A pre-filter combined with threshold self-learning wavelet algorithm is proposed for hydraulic pressure signals denoising. The denoising threshold is self-learnt in the steady flow state, and then modified under a giv... A pre-filter combined with threshold self-learning wavelet algorithm is proposed for hydraulic pressure signals denoising. The denoising threshold is self-learnt in the steady flow state, and then modified under a given limit to make the mean square errors between reconstruction signals and desirable outputs minimum, so the corresponding optimal denoising threshold in a single operating case can be obtained. These optimal thresholds are used for the whole signal denoising and are different in various cases. Simulation results and comparative studies show that the present approach has an obvious effect of noise suppression and is superior to those of traditional wavelet algorithms and back-propagation neural networks. It also provides the precise data for the next step of pipeline leak detection using transient technique. 展开更多
关键词 hydraulic pressure signal WAVELET THRESHOLD DENOISING self-learning neural network
原文传递
Long-and Short-Term Self-Learning Models of Rolling Force in Rolling Process Without Gaugemeter of Plate 被引量:3
17
作者 ZHU Fu-wen ZENG Qing-liang +2 位作者 HU Xian-lei LI Xi-an LIU Xiang-hua 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第1期27-31,61,共6页
Owing to a lack of gaugemeter and the variety of steel grades and standards in some plate mills, the longand short-term self-learning models of rolling force based on gauge soft-measuring with high precision were brou... Owing to a lack of gaugemeter and the variety of steel grades and standards in some plate mills, the longand short-term self-learning models of rolling force based on gauge soft-measuring with high precision were brought up. The soft-measuring method and target value locked method were used in these models to confirm the actual exit gauge of passes, and thick layer division and exponential smoothing method were used to dispose the deformation resistance parameter, which could be calculated from the actual data of the rolling process. The correlative mathematical methods can also be adapted to self-learning with gaugemeter. The models were applied to the process control system of AGC (automatic gauge control) reconstruction on 2800 mm finishing mill of Anyang steel and favorable effect was obtained. 展开更多
关键词 PLATE self-learning soft measuring rolling force
原文传递
Multivariable temperature measurement and control system of large-scaled vertical quench furnace based on temperature field 被引量:7
18
作者 XuanZHOU ShouyiYU +1 位作者 JiangYU LiequanLIANG 《控制理论与应用(英文版)》 EI 2004年第4期401-405,共5页
A temperature control system of 31m vertical forced air-circulation quench furnace is proposed, which is a kind of equipment critical for thermal treatment of aluminum alloy components that are widely used in aerospac... A temperature control system of 31m vertical forced air-circulation quench furnace is proposed, which is a kind of equipment critical for thermal treatment of aluminum alloy components that are widely used in aerospace industry. For the effective operation of the furnace, it is essential to analyze the radial temperature distribution of the furnace. A set of thermodynamic balance equations modeling is established firsdy. By utilizing the numerical analysis result to modify the temperature measurements, the control accuracy and precision of the temperature are truly guaranteed. Furthermore, the multivariable decoupling self-learning PID control algorithm based on the characteristics of strong coupling between the multi-zones in the large-scaled furnace is implemented to ensure the true homogeneity of the axial temperature distribution. Finally, the redundant structure composed of industrial control computers and touch panels leads to great improvement of system reliability. 展开更多
关键词 Axial temperature distribution homogeneity Radial temperature distribution Decoupling self-learning PID control Redundant structure
下载PDF
Application of Self-Learning to Heating Process Control of Simulated Continuous Annealing 被引量:2
19
作者 WANG Wen-le LI Jian-ping HUA Fu-an LIUXiang-hua 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第6期27-31,共5页
On the basis of a simulated bright continuous annealing experimental machine, a process control model for heating system was built. The heating model was simplified and self-learning parameters were normalized to enha... On the basis of a simulated bright continuous annealing experimental machine, a process control model for heating system was built. The heating model was simplified and self-learning parameters were normalized to enhance the precision of temperature control. By means of the division of temperature layers and the exponential smoothing disposal of the annealing experimental data, the self-learning of the heating model was carried out. Through exponentially smoothing the deviation of self-learning parameters of the heated phase in heating process, dynamic modifications of self-learning parameters and heating electric current were carried out, and the precision of temperature control was confirmed. The application indicated that the process control model for the heating system can control temperature with high precision, and the deviation can be controlled within 8 ℃. 展开更多
关键词 ANNEALING SIMULATION annealing maehine process control self-learning
原文传递
A self-learning TLBO based dynamic economic/environmental dispatch considering multiple plug-in electric vehicle loads 被引量:8
20
作者 Zhile YANG Kang LI +2 位作者 Qun NIU Yusheng XUE Aoife FOLEY 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2014年第4期298-307,共10页
Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operationa... Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements.These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints,such as the valve point effect,power balance and ramprate limits.The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times.In this paper,multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model.Self-learning teaching-learning based optimization(TLBO)is employed to solve the non-convex non-linear dispatch problems.Numerical results onwell-known benchmark functions,as well as test systems with different scales of generation units show the significance of the new scheduling method. 展开更多
关键词 Economic dispatch Environmental dispatch Plug-in electric vehicle self-learning Teaching learning based optimization Peak charging Off-peak charging Stochastic charging
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部